
Model Level Design Pattern Instance Detection using
Answer Set Programming

Gaurab Luitel
Department of Computer

Science and Software
Engineering

Miami University
Oxford, Ohio, USA

luitelg@miamioh.edu

Matthew Stephan
∗

Department of Computer
Science and Software

Engineering
Miami University

Oxford, Ohio, USA
stephamd@miamioh.edu

Daniela Inclezan
Department of Computer

Science and Software
Engineering

Miami University
Oxford, Ohio, USA

inclezd@miamioh.edu

ABSTRACT
Software engineering is becoming increasingly model-centric.
Engineers are using models more within projects and their
models are growing in complexity. A challenge facing the
modeling community is evaluation of these models. One
technique for software evaluation is detecting instances of es-
tablished“good”or“bad”solutions in a system, often termed
design patterns or antipatterns, respectively. Most
approaches require implemented code for detection. How-
ever, this precludes early-stage analysis, and the evaluation
of purely or mostly model-centric systems. In this position
paper, we introduce a detection technique that uses answer
set programming to find occurrences of patterns within sets
of structural and behavioral models. We represent the pat-
terns as rules and the structural and behavioral system mod-
els as facts, requiring both model types since some patterns
specify both. We provide an overview of our proposed ap-
proach, contrast existing work, and present discussion points
on its impact on model evaluation and anticipated chal-
lenges.

CCS Concepts
•Software and its engineering → Model-driven soft-
ware engineering; Constraint and logic languages;
Software maintenance tools; Software reverse engineer-
ing; Maintaining software; Software design tradeoffs;

Keywords
model evaluation; design patterns; antipatterns; model pat-
terns; model quality; answer set programming

1. INTRODUCTION
∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MiSE’16, May 16-17, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4164-6/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2896982.2896991

The use of modeling is becoming increasingly prevalent in
the software engineering community [19]. Whether engaged
in a pure model-driven process [30] where the models are
the primary artifacts in all phases of the project’s life cy-
cle, or in a partial model-centric environment, engineers are
becoming more comfortable with modeling. As this com-
fort increases and the complexity of software systems grows,
so does the reliance and complexity of the software models.
One challenge facing the modeling community is providing
the means to analyze models to assess their quality, often
termed model evaluation [26, 27].

Traditional software evaluation is quite mature [28] com-
pared to model evaluation. One established method of eval-
uating software quality is by detecting the existence or ab-
sence of accepted positive or negative system implementa-
tions [16, 39], known as“design patterns”and“antipatterns”,
or “patterns” collectively. Finding instances of these in soft-
ware not only promotes common vocabulary but also pro-
vides analysts an immediate indication of quality based on
what is found and where. Pattern detection has been re-
alized through both programming code analysis and model
analysis. An advantage of the latter is allowing for anal-
ysis at any stage during the software engineering process.
The majority of model analysis approaches focus solely on
structure diagrams, such as UML Class diagrams. How-
ever, structural information alone is not always sufficient for
software pattern detection [3]. Including semantic informa-
tion, such as that provided by behavioral diagrams, can al-
low for more precise detection especially for behavioral-type
patterns [12]. However, almost all approaches that include
behavioral information in their calculations require imple-
mented code for either static or dynamic analysis. Early on
in the software life cycle, or in model-centric environments,
code may not be available. In addition, these approaches do
not reap the benefits of model-driven pattern detection [36].

One form of reasoning about models involves using logic
programming [24], a paradigm that describes a domain as
rules and facts. In this position paper, we propose an ap-
proach using a form of logic programming called answer set
programming (ASP) in order to analyze structural and be-
havioral UML diagrams in order to detect patterns. In con-
trast to existing work, this approach does not depend on
code and has the potential to detect patterns containing be-
havioral aspects. A limitation of this work is that it requires
both UML Class and Sequence diagrams, however, these di-
agrams are among the most commonly used in industry [19].

We begin this position paper in Section 2 by presenting
background information on software patterns and answer set
programming. This is followed by a description of related
work and how our work differs to that in the literature. The
ideas for our proposed method are described in Section 3, in-
cluding our choice of answer set programming solver and the
various stages in the process. Section 4 presents our valida-
tion plan, our expected results, and what we plan on having
ready for the workshop. We then conclude in Section 5.

2. BACKGROUND AND RELATED WORK

2.1 Software Patterns
Design patterns are used to describe abstract solutions for

frequent problems and desired properties in software engi-
neering. Antipatterns are bad practices and negative proper-
ties that engineers should strive to avoid and correct when
found. Together, these can be termed software patterns.
There are patterns that deal with specific domains, like Java
Enterprise systems [8] and multi-agent systems [29]. There
are also more general-purpose sets of patterns, like the Gang
of Four Patterns [12], or those dealing with performance is-
sues and standards [40]. The definition for a software pat-
terns includes the context of the problem and a general form
of the solution, often in model form, allowing it to be applied
in multiple ways. From a software evaluation and quality
perspective, confirming the presence of design patterns or
absence of antipatterns can be used as evaluation metrics,
for example, design patterns in architectural evaluation [16]
and antipatterns in Java projects [39] or Simulink [35].

2.2 Answer Set Programming
Answer set programming is a form of logic programming

that is declarative. It is specifically geared towards com-
plex search problems, including those that are NP-hard [23].
While is very similar in syntax to the popular Prolog lan-
guage [7], the underlying computational foundation of ASP
is quite different. Specifically, ASP’s semantics are grounded
in the stable logic programming model [14] and it employs
answer set solvers to realize its search techniques. While
ASP is rooted in first order logic, it belongs to the class
of non-monotonic logic in that the addition of new infor-
mation to an ASP program can cause predicates previously
believed to be true to be retracted. This is a powerful fea-
ture that allows natural ASP representations of statements
found in natural language and exceptions through the use
strong negation and default negation.

An answer set [15] program encodes the set of beliefs of
an intelligent agent. It consists of rules of the type “head ←
body” read as“believe head if you believe body”. head is a lit-
eral, such as an atom or its negation in first order logic, and
body is a set of literals, possibly preceded by “not”, which is
read as “there is no reason to believe”. Atoms and literals
express properties of domain objects and relationships be-
tween objects. These ASP program models, called answer
sets, consist of those literals that are believed to hold. A
program may have multiple answer sets, each corresponding
to a belief set of the agent. Answer sets are computed by
inference systems called solvers.

ASP is especially suitable for representing qualitative
knowledge, such as the knowledge we plan on encoding in
Class and Sequence diagrams, default statements and their

exceptions, dynamic domains in which change is triggered
by the occurrence of actions, and uncertainty.

2.3 Related Work
We categorize pattern instance detection approaches into

three groups based on how they represent the system under
study and the patterns. There are techniques that trans-
form the system to a graph and perform graph matching,
techniques representing a system as a matrix and search for
matrix representations of patterns, and techniques describ-
ing the system as logic facts and the patterns as logic rules.

2.3.1 Graph Representation
A class diagram can be considered a directed graph where

classes correspond to nodes and the edges correspond to as-
sociations between the classes [38]. A pattern can be rep-
resented similarly, that is, the roles in the patterns are rep-
resented as nodes and the associations between those roles
are represented as edges. These pairs of graphs can then be
compared and checked. Tsantalis et al. [38] implement this
by calculating the similarity between any two vertices of the
system with the pattern. The pair that has the highest sim-
ilarity score is considered to be a match. These graphs for
both the patterns and systems can also be represented as
abstract syntax trees (AST) containing information about
classes, attributes, methods, and class inheritance [1, 37].
Each node can be unique based on metrics including num-
ber of private, public, and protected methods; number of at-
tributes; associations; dependencies; et cetera. These graph
representations can be obtained through static analysis or
small-scale dynamic program execution [42].

2.3.2 Matrix Representation
Another form of representation involves using matrices.

For example, system classes can be represented as an n x n
matrix, where n is the number of classes. A pattern with
m entities/roles can be represented in an mxm matrix. For
example, the adapter design pattern [12] has four roles that
would entail a 4 x 4 matrix: Client, Target, Adapter, and
Adaptee. Each cell within the matrix has values indicative
of factors such as number of methods in the class, if it is
inherited, variables, and others. Dong et al. [10] check for
similar values in the system matrix and the pattern matrix
by calculating if classes are multiples of one another, utiliz-
ing prime numbers as the cell values. Tsantalis et al. [38]
eventually transform their graphs into matrices for addition
metrics. These approaches both require access to source
code.

2.3.3 Logic Representation
Mikkonen demonstrated that formalizing aspects of pat-

terns can assist in design pattern reasoning, and provided
various insights and examples of formalizing design patterns
[25]. In this category of approaches, the system undergoing
analysis is formalized as facts and the patterns as rules. The
inference engine working on these representations can then
find which facts satisfy the rules specified by the patterns.
More specifically, the rule variables are the constants, such
as a class or an object, that satisfy the rules for the pat-
tern being searched for. Those that satisfy the rules can
then be viewed as a candidate pattern instance. Kramer
and Prechelt [20], Heuzeroth et al. [17], De Lucia et al. [9],
Bergenti et al. [4], and Birkner [5] have all used logic rep-

resentations to detect patterns. Kramer and Prechelt were
the first and their work does not consider behavioral aspects.
The remaining three approaches are able to detect structural
and behavioral patterns however their work requires access
to the source code for that. Zhu et al. [43] have work that
closely parallels ours and we discuss it later.

While the Object Constraint Language (OCL) seems as if
it would be suitable for this task and representation as it can
describe rules for UML models, it is unable to represent the
absence of class relationships and is not ideal for meta-level
descriptions [11].

2.3.4 Summary and Relation to Proposed Method
All work we found in the literature performs some form

of structural analysis on models. Some of that work is also
capable of behavioral analysis and/or including behavioral
diagrams. Of the work that considers behavioral aspects,
nearly all of it requires source code. This contrasts the tech-
nique we propose in this position paper as we focus entirely
on the modeling level, allowing for early analysis in the soft-
ware engineering process and evaluation of models in a pure
model driven environment.

Bergenti et al. [4] take Class diagrams as input like we
do. However, to get their behavioral information, they use
Collaboration diagrams whereas we use Sequence diagrams.
Firstly, Sequence diagrams are more commonly used in
industry than Collaboration diagrams [19]. Secondly, Se-
quence diagrams are more helpful in detecting pattern in-
stances as they are more concerned with temporal aspects.
In addition, Sequence diagrams have already been explicitly
defined for many patterns [5, 12].

SPASS versus ASP.
The work that is most similar to ours is that of Zhu et

al. [43]. They use first-order predicate logic in order to
represent patterns as predicates on UML diagrams. Their
tool, LAMBDES-DP, translates UML models into first or-
der logic and integrates an automated theorem prover called
SPASS [41] for inference. For their experiments, they cre-
ated a repository of the Gang of Four(GOF) patterns. A key
limitation of their work they acknowledge is that SPASS can
run forever/time out without any results due to inference
being NP-hard for first order logic reasoning. For example,
they experienced twenty four time outs in their experiments.
The approach we describe in this position paper employs
ASP, which always terminates in principle [23] and is tai-
lored to these type of search problems. In addition, since
ASP is non-monotonic and uses two negation types, pattern
statements, such as “Normally, the state objects in the state
pattern are singletons”, and exceptions can be represented
naturally.

There is an important distinction between ASP and auto-
mated theorem provers, like SPASS. Theorem provers focus
on what is known and are goal directed, moving forward
towards what is being proven. In contrast, ASP has no
real notion of “forward” or “backward” inference. An ASP
program simply encodes an agent’s beliefs. Thus an ASP
program may have multiple answer sets, where each answer
set stands for a possible set of beliefs of an agent. For exam-
ple, if specific conditions are met in a diagram, an intelligent
agent could infer either that X design pattern is present or
Y design pattern is present. If such situations occur where
a set of features may indicate more than one design pattern,

then ASP will be able to identify all of these possibilities,
whereas a theorem prover will not.

Regarding input size of the systems and patterns, we con-
tend that ASP can handle larger inputs and is more efficient.
SPASS has a limit on the number of rules that it can han-
dle, while ASP does not. However, ASP computation can be
difficult when there are specific cycles, such as default nega-
tion cycles, or function symbols producing infinite inputs
when grounding. An additional disadvantage of ASP is that
it is not suitable for representing quantitative information
especially when reasoning with large numerical domains or
real numbers. The Class and Sequence diagrams we will be
considering should not exhibit these features.

In addition, while Zhu et al. validated their work using the
GOF patterns only, we plan on considering those in addition
to other patterns, as we discuss in Section 4.1.

3. METHOD OVERVIEW
Once completed our proposed method involves a number

of phases and is illustrated in Figure 1. In this section, we
step through our vision of the process and how we plan on
realizing each step. We include a small contrived example
of a State Pattern [12] instance in a system1 to help demon-
strate. Its class diagram is presented in Figure 2. Using the
code included in the example system, we were able to re-
verse engineer a sequence diagram using Visual Paradigm2,
which we present an excerpt of in Figure 3.

3.1 Generation of the Rules and Facts
The first milestone in the process is to generate the ASP

facts and rules. Represented by the first set of arrows on the
left in Figure 1, this involves a combination of manual and
automatic effort.

3.1.1 System Facts
Our goal is to make fact generation an automatic process

whereby systems being analyzed have their class diagrams
and sequence diagrams represented as ASP facts. The form
of models we plan on requiring are those represented in XMI.
This is due to XMI’s prevalence in the modeling community
and, from an implementation and experimentation perspec-
tive, we can produce example/test UML models and export
them to XMI through available tools such as StarUML [21].
So our main challenge here is writing an appropriate trans-
formation from XMI to ASP. Seeing as Shan and Zhu were
able to create analogous mappings from XMI to first order
logic [32] that formed the basis of LAMBDES-DP [2, 3], we
believe this is feasible. We plan on leveraging their work as
well as Mikkonen’s [25]. Most of their work focuses on the
GOF patterns, but we can still apply the general ideas.

Using our example from Figures 2 and 3, we demonstrate
some representations of facts pertinent to state pattern de-
tection. For the class diagram in Figure 2, we present facts
we derived, manually at this point, on operations. Specifi-
cally, we represent classes in the form of class(name, [list of
attributes], [list of operations], isAbstract) and operations
in the form of operation(class Name, operation Name, re-
turn type, [list of parameters], isAbstract, isConstructor, is-
Static). Using those meta representations, some example
facts about classes and operations from the class diagram

1http://www.tutorialspoint.com/
2http://www.visual-paradigm.com/

Figure 1: Proposed Process

Figure 2: Class Diagram of State Pattern Instance

that our proposed process can derive from a diagram’s XMI
is included in Representation Set 1. It is important to re-
member that constants begin with a lowercase letter in ASP.
The single included class is the context concrete class that
has an attribute of type state, and methods called context,
getState, and setState. The first operation represents the
doAction abstract method of class state, which takes a con-
text object as a parameter. The second represents the con-
crete implementation of the first operation, located in the
class startState. The fact that it is the concrete implemen-
tation would be deduced later during the rule evaluation.
The last operation involves the context class method that
sets the state given a provided state.

class(context, [state], [context, getState, setState], no).

operation(state, doAction, void, [context], yes, no, no).

operation(startState, doAction, void, [context], no, no, no).

operation(context, setState, void, [startState], no, no, no).

(1)

Sequence diagrams consist of lifelines describing specific
entities, such as classes or class instances; messages; and
a relative order that the messages are delivered. For se-
quence diagrams messages, we might represent our ASP
facts in the form message(messageID, sender, receiver, oper-
ation invoked). Using this form, and the concrete sequence
diagram of our system in Figure 3, we can synthesize facts
such as those we present in Representation Set 2. The first
message represents the doAction call from a statePattern-
Demo object to a startState object. The second message is
triggered by the first as indicated by the identical first two
numbers. This information is important because it allows us
to keep track of what requests get called by which handlers
and helps build a hierarchy of message calls. The third mes-

Figure 3: Sequence Diagram of State Pattern In-
stance

sage describes the similar call of doAction after the state has
been switched to a stopState object. The fourth follows the
same idea as the second message, allowing us to represent
requests, triggers, and handlers.

message(13, statePatternDemo, startState, doAction).

message(131, startState, context, setState).

message(16, statePatternDemo, stopState, doAction).

message(161, stopState, context, setState.

(2)

3.1.2 Pattern Rules
Developing the structural and behavioral pattern rules is

a manual process. This is because the specific patterns in
scope have to be selected by analysts and then transformed
into the ASP rules. While it is analogous to fact generation,
generating the rules is much more complex and would in-
volve pattern inference. The only way this inference could
be automated was if there existed instantiations of general
pattern models [36] or one established general model that
can be mapped and transformed into ASP rules. Since rule
generation needs to be done only once for each rule of inter-
est, having this process be manual is acceptable. In addition,
rules can be updated and improved manually over time.

We continue with our example of the State pattern, which
has both structural and behavioral aspects. It has a num-
ber of requirements [3], as outlined by Bayley and Zhu. For
example, requirements on components include 1) Contexts
and states are classes, 2) Requests are the operations of the
context, and 3) Handlers are the operations of the state.
Static conditions identified by Bayley and Zhu include 4)
There is an aggregation between Context and State and 5)
All handlers must be abstract. Dynamically, 6) Every re-
quest is handled by a handler and 7) Every handler either
returns or sends a message including the new state as a pa-
rameter. We provide some example ASP rules we devised
that encompass a selection of these requirements in Rep-
resentation Set 3, where the numbers on the left represent
the requirements being addressed and the variables are cap-
italized as necessitated in ASP. In these ASP rules the “ ”
symbol represents a wild card, meaning the ASP solver ac-
cepts anything in that place. The rule addressing 2) ensures
that if there is a class that is a context class and it has a list
of operations, then each of those operations are viewed to be
“requests”. For requirement 3), the rule is similar to the rule
from requirement 2), in that all of the operations of a state
class are called handlers. The last example rule, addressing
requirement 5), ensures that every handler must be an ab-
stract operation, hence the “no” in the abstract operation
parameter.

2)isRequest(Op) : −class(C, ,OpList,), isContext(C),

#member(Op,OpList), operation(, Op, , , , ,).

3)isHandler(Op,C) : −class(C, ,OpList,),

isState(C),

member(Op,OpList),

operation(, Op, , , , ,).

5)isHandler(Op,C) : −operation(C,Op, , , no, ,).

(3)

3.2 ASP Engine

3.2.1 Choice of ASP Solver
There are a number of implementations of ASP solvers,

but two have consistently performed better than others in
ASP competitions: Clingo [13] and DLV [22]. Both are in-
spired by the Davis-Putnam-Logemann-Loveland (DPLL)
SAT solving backtracking algorithm and use other tech-
niques such as back-jumping, restarts, et cetera.

In terms of the specific ASP dialect that each solver ac-
cepts, there are important differences. In DLV, there are
built-in functions for lists and the Prolog notation for lists is
applicable. Moreover, DLV has a more natural and intuitive
notation for aggregate functions that is closer to mathemat-
ical notation. Aggregates also exist in Clingo, but they are
somewhat cumbersome and less straightforward. Queries
can be specified in a DLV program, but not in Clingo. DLV
supports two types of query answering capabilities: (1) cau-
tious, that is, something is true if it is true in all answer sets
of a program and (2) brave, that is, something is true if it
is true in at least one answer set of the program.

Writing mathematical expressions in the language of DLV
is difficult, as literals consisting of arithmetic expressions are
required to contain only one arithmetic operation. Clingo
has much better support for arithmetic expressions, for ex-

ample, arithmetic operations can be concatenated. Finally,
Clingo introduces the concept of “choice rules” that allow
for easy specification for indicating that answer sets should
contain a certain number of literals of a given set. The same
is not always as easy to encode in DLV.

At this stage, we are planning on using the DLV solver
because of its support for lists, queries, and its natural syn-
tax for aggregates. All of which will be important for our
purposes.

3.3 Element Alignment and Candidate Inter-
section

This stage of the process involves interpreting the out-
put of the ASP solver. The output will indicate struc-
tural and behavioral elements that adhere to rules describ-
ing structural patterns and behavioral patterns, respectively.
One challenge here is to align the Class diagram elements
with the corresponding Sequence diagram elements. In cases
where they are explicitly linked or cross-referenced, as is
done in tools like Rational Software Architect3 this is rel-
atively easy. In other cases signature and element map-
pings can be developed to link the appropriate diagram el-
ements [43]. Once elements are linked, we need to calcu-
late the intersection of the structural pattern instances and
behavioral ones. For example, if there is a structural pat-
tern instance of a specific pattern, Y, found among a set
of classes, X, we need to determine if there is a behavioral
pattern instance for pattern Y found among the X set of
classes. Since the rules specify roles, we will be able to ex-
plicitly identify the roles of the pattern participants.

3.4 Presentation of
the Pattern Candidates and Roles

Presentation to the analysts of the potential pattern can-
didates and the corresponding roles is an important con-
sideration as it can dictate how the results are used. The
simplest approach would be a textual representation, like
XML, that has a <pattern> tag that indicates the type of
pattern found, and an <element> tag that can indicate the
universally unique ID (UUID) of the UML element, and its
role(s) within the pattern.

A long term goal would be to integrate the results into
an existing UML graphical viewer. For example, an ana-
lyst could click on specific pattern instances, and using col-
orization, the applicable UML elements can be highlighted,
indicating different roles through labels or shading. This
is possible because of UML’s use of UUIDs. We could po-
tentially leverage existing tools such as VizzAnalyzer that
help visualize structural and behavioral architectural analy-
sis [18].

4. DISCUSSION

4.1 Validation Plan
For general validation, we will inject some pattern in-

stances in larger systems, potentially mutating them slightly
for variation as we have done in other validation and eval-
uation frameworks [33, 34]. The main validation will come
from comparing our results against results from existing ap-
proaches. In many cases we can use the systems and patterns
described in their work. While our technique focuses solely

3www-03.ibm.com/software/products/en/ratisoftarch

on the model-level, we will be able to contrast our results
to those using source code by reverse engineering the Class
and Sequence diagrams from the code used in their experi-
ments using transformation tools, such as Visual Paradigm.
In addition to incorporating the Gang of Four patterns [12]
set, we plan on formalizing some of Brown’s antipatterns [6]
and UML architectural patterns [31].

4.2 Expected Results
For approaches performing model evaluation that focus

solely on structural diagrams, we expect that our tool will
have higher precision detecting instances of behavioral pat-
terns. That is, of all the potential pattern instances iden-
tified, more of them will be “correct”. This is because we
are considering more information and increasing the require-
ments for potential matches. Ideally, the recall, meaning
number of true pattern instances identified from the sys-
tems under study, will be relatively consistent. However,
this will be a challenge and is a matter of tuning the pat-
tern specification rules.

Contrasting with LAMBDES-DP, our goal is to improve
on their false-positive error rate, which they attributed to
their time outs. So, we anticipate higher recall than their
tool, accounting for any potential pattern instances that
they would miss. The precision should be comparable, as-
suming the formalizations are similar. Because we both ap-
ply and extend the predicate logic formalisms provided by
Bayley and Zhu [2] for the UML systems and the patterns,
we believe this will be the case.

In contrast to source-code approaches, there is a good
chance they will have better precision. This is understand-
able due to source code containing much more detailed infor-
mation and being able to perform a much more discerning
analysis. From a recall perspective, depending on the re-
alization of the patterns in the projects, it is possible that
patterns that were intended to be included by engineers were
not due to implementation error. Models are more abstract
than source code, so the concrete source code artifacts be-
ing compared have more room for differences/noise. But, for
the most part, the recall of source code approaches should
be comparable to our work employing ASP.

4.3 Preliminary Results for the Workshop
By the time of the workshop, we plan on having imple-

mented this process on a small scale. Specifically, we want
to implement fact generation for UML models, and develop
tested and tuned pattern rules for a handful of patterns.
Some low-hanging fruit that we are starting with is the
Strategy and State pattern as structural analysis approaches
are unable to discern between the two due to their similar
structure.

5. CONCLUSIONS
Being able to evaluate software at the modeling level has

many benefits. One way of evaluating models is by detect-
ing positive and negative quality indicators in models in the
form of design patterns and antipatterns, respectively. Much
of the existing work in pattern detection and analysis re-
quires completed source code in order to generate models or
to fill in informational gaps, and focuses solely on structural
pattern aspects. In this position paper, we presented our ini-
tial ideas on a technique using answer set programming in

order to perform analysis directly on the models themselves
in lieu of source code.

Representing the structural and behavioral pattern as-
pects being searched for as ASP rules and systems to be
analyzed as facts, we plan on identifying potential pattern
instances efficiently and with more accuracy, especially com-
pared to approaches that consider only structure. The work
most similar to ours uses first order logic and SPASS for in-
ference. Using ASP has three advantages over SPASS: ASP
will always terminate; ASP will be able to identify multiple
and all formalized possibilities, whereas a theorem prover
will not; and ASP can handle larger input and more rules
than SPASS.

Interesting research aspects and milestones of this work
include formalizing the patterns as ASP rules, automating
the transformation of UML Class and Sequence diagrams as
ASP facts, aligning elements after inference, and presenting
the results to analysts. To validate our work, we plan on
comparing against both model-based techniques, and those
that require source code by reverse engineering models from
the code. It is our belief that using ASP in this manner
will stimulate interesting modeling research and help facil-
itate modeling in software engineering by improving model
analysis and evaluation.

6. ACKNOWLEDGMENTS
We would like to thank Dr. Gerald (Jerry) Gannod and

Dr. Dhananjai (DJ) Rao for their guidance on this work,
both on the related work aspects and for their suggestions
on the approach.

7. REFERENCES
[1] G. Antoniol, R. Fiutem, and L. Cristoforetti. Design

pattern recovery in object-oriented software. In
International Workshop on Program Comprehension,
pages 153–160. IEEE, 1998.

[2] I. Bayley and H. Zhu. Formalising design patterns in
predicate logic. In International Conference on
Software Engineering and Formal Methods, pages
25–36. IEEE, 2007.

[3] I. Bayley and H. Zhu. Formal specification of the
variants and behavioural features of design patterns.
Journal of Systems and Software, 83(2):209–221, 2010.

[4] F. Bergenti and A. Poggi. IDEA: A design assistant
based on automatic design pattern detection. In
International conference on Software Engineering and
Knowledge Engineering, pages 336–343, 2000.

[5] M. Birkner. Objected-oriented design pattern
detection using static and dynamic analysis in Java
software. Master’s thesis, University of Applied
Sciences Bonn-Rhein-Sieg, 2007.

[6] W. H. Brown, R. C. Malveau, and T. J. Mowbray.
AntiPatterns: refactoring software, architectures, and
projects in crisis. Wiley, 1998.

[7] W. Clocksin and C. S. Mellish. Programming in
PROLOG. Springer Science & Business Media, 2003.

[8] W. Crawford and J. Kaplan. J2EE design patterns.
O’Reilly Media, Inc., 2003.

[9] A. De Lucia, V. Deufemia, C. Gravino, and M. Risi.
Improving behavioral design pattern detection
through model checking. In European Conference on

Software Maintenance and Reengineering (CSMR),
pages 176–185. IEEE, 2010.

[10] J. Dong, D. S. Lad, and Y. Zhao. Dp-miner: Design
pattern discovery using matrix. In International
Conference and Workshops on the Engineering of
Computer-Based Systems, pages 371–380. IEEE, 2007.

[11] R. B. France, D.-K. Kim, S. Ghosh, and E. Song. A
UML-based pattern specification technique.
Transactions on Software Engineering, 30(3):193–206,
2004.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Pearson Education, 1994.

[13] M. Gebser, R. Kaminski, B. Kaufmann, and
T. Schaub. Answer set solving in practice. Synthesis
Lectures on Artificial Intelligence and Machine
Learning, 6(3):1–238, 2012.

[14] M. Gelfond and V. Lifschitz. The stable model
semantics for logic programming. In ICLP/SLP,
volume 88, pages 1070–1080, 1988.

[15] M. Gelfond and V. Lifschitz. Classical negation in
logic programs and disjunctive databases. New
generation computing, 9(3-4):365–385, 1991.

[16] N. B. Harrison and P. Avgeriou. Leveraging
architecture patterns to satisfy quality attributes. In
Software Architecture, pages 263–270. Springer, 2007.

[17] D. Heuzeroth, T. Holl, G. Högström, and W. Löwe.
Automatic design pattern detection. In International
Workshop on Program Comprehension, pages 94–103.
IEEE, 2003.

[18] D. Heuzeroth and W. Löwe. Understanding
architecture through structure and behavior
visualization. In Software Visualization, pages
243–286. Springer, 2003.

[19] J. Hutchinson, J. Whittle, M. Rouncefield, and
S. Kristoffersen. Empirical assessment of MDE in
industry. In International Conference on Software
Engineering, pages 471–480. ACM, 2011.

[20] C. Krämer and L. Prechelt. Design recovery by
automated search for structural design patterns in
object-oriented software. In Working Conference on
Reverse Engineering, pages 208–215. IEEE, 1996.

[21] M. Lee, H. Kim, J. Kim, and J. Lee. StarUML 5.0
developer guide. The Open Source UML/MDA
Platform, 2005.

[22] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob,
S. Perri, and F. Scarcello. The DLV system for
knowledge representation and reasoning. Transactions
on Computational Logic, 7(3):499–562, 2006.

[23] V. Lifschitz. What is answer set programming?. In
AAAI, volume 8, pages 1594–1597, 2008.

[24] J. W. Lloyd. Foundations of logic programming.
Springer Science & Business Media, 2012.

[25] T. Mikkonen. Formalizing design patterns. In
International conference on Software engineering,
pages 115–124. IEEE Computer Society, 1998.

[26] P. Mohagheghi and J. Aagedal. Evaluating quality in
model-driven engineering. In International Workshop
on Modeling in Software Engineering, page 6 pp.,
2007.

[27] T. Punter, J. Voeten, and J. Huang. Quality of model

driven engineering. Model-Driven Software
Development: Integrating Quality Assurance, 2009.

[28] C. V. Ramamoorthy and S.-b. F. Ho. Testing large
software with automated software evaluation systems.
In ACM SIGPLAN Notices, volume 10, pages
382–394. ACM, 1975.

[29] S. Sauvage. Design patterns for multiagent systems
design. In MICAI: Advances in Artificial Intelligence,
pages 352–361. 2004.

[30] D. C. Schmidt. Guest editor’s introduction:
Model-driven engineering. Computer, 39(2):0025–31,
2006.

[31] D. C. Schmidt, M. Stal, H. Rohnert, and
F. Buschmann. Pattern-Oriented Software
Architecture, Patterns for Concurrent and Networked
Objects, volume 2. John Wiley & Sons, 2013.

[32] L. Shan and H. Zhu. A formal descriptive semantics of
UML. In Formal Methods and Software Engineering,
pages 375–396. Springer, 2008.

[33] M. Stephan. Model clone detector evaluation using
mutation analysis. In International Conference on
Software Maintenance and Evolution, pages 633–638.
IEEE, 2014.

[34] M. Stephan. A Mutation Analysis Based Model Clone
Detector Evaluation Framework. PhD thesis, Queen’s
University, August 2014.
http://qspace.library.queensu.ca/handle/1974/12376.

[35] M. Stephan and J. R. Cordy. Identification of
Simulink Model Antipattern Instances using Model
Clone Detection. In International Conference on
Model Driven Engineering Languages and Systems,
pages 276 – 285, 2015.

[36] M. Stephan and J. R. Cordy. Identifying instances of
model design patterns and antipatterns using model
clone detection. In International Workshop on
Modelling in Software Engineering, pages 48–53, 2015.

[37] P. Tonella and G. Antoniol. Object oriented design
pattern inference. In International Conference on
Software Maintenance, pages 230–238. IEEE, 1999.

[38] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and
S. T. Halkidis. Design pattern detection using
similarity scoring. Transactions on Software
Engineering, 32(11):896–909, 2006.

[39] E. Van Emden and L. Moonen. Java quality assurance
by detecting code smells. In Working Conference on
Reverse Engineering, pages 97–106, 2002.

[40] A. I. Verkamo, J. Gustafsson, L. Nenonen, and
J. Paakki. Design patterns in performance prediction.
In Workshop on Software and Performance, volume
2000, pages 143–144, 2000.

[41] C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar,
M. Suda, and P. Wischnewski. SPASS version 3.5. In
International Conference on Automated Deduction,
pages 140–145. Springer, 2009.

[42] L. Wendehals. Improving design pattern instance
recognition by dynamic analysis. In Workshop on
Dynamic Analysis, pages 29–32, 2003.

[43] H. Zhu, I. Bayley, L. Shan, and R. Amphlett. Tool
support for design pattern recognition at model level.
In International Computer Software and Applications
Conference, volume 1, pages 228–233. IEEE, 2009.

