Voice-Driven Modeling: Software Modeling
Using Automated Speech Recognition

Dana Black, Eric J. Rapos, and Matthew Stephan
Department of Computer Science & Software Engineering
Miami University
Oxford, OH, USA
{blackd,rapose,stephamd } @ miamioh.edu

Abstract—Voice-driven programming allows engineers to al-
leviate physical discomfort, pain, and injury. It also has the
potential to be faster than typing and assist those with disabilities.
While there are a number of solutions to voice-driven pro-
gramming, Model-Driven Engineering (MDE) has yet to exploit
this non-conventional but high-potential approach to software
development. Standard convention in MDE practice involves
creating software models using a traditional mouse and keyboard
combination, or whiteboard sketch hardware. In this position
paper, we introduce our vision and ideas for a Voice-Driven
Modeling (VDM) approach. Our vision involves a framework
that includes 3 phases: Speech Processing, Natural Language
Processing, and Context Specific Modeling. We describe these 3
phases in this paper, which others can apply in their attempts
to realize VDM. We additionally include our research plans for
developing a VDM solution targeted at Simulink models and our
early proof of concept capable of implementing several example
commands. We establish the pertinence of this work through a
survey that finds negligible work on VDM and highlights the
potential impact this can have on the field of MDE as a whole.
Specifically, it is our position that it can have a positive impact
on modelers in general, modelers with disabilities, and domain
experts not familiar with modeling. It is our hope that this work
helps fuel research in this area, allowing for a new way to develop
software models.

Index Terms—speech to model, model by voice, voice-driven
software engineering, voice-driven modeling, model-driven engi-
neering

I. INTRODUCTION

The way people interact with technology is constantly
evolving. For example, people now issue voice commands
and requests to robotic assistants daily, be it on their mobile
devices or dedicated devices placed around their homes and
workplaces. A related growing non-conventional approach to
developing software is using speech recognition to develop
system program code. For example, VoiceCode [1], Aenea!,
and Vocola® allow developers to program using verbal dic-
tation and commands rather than traditional typing. In addi-
tion to having the potential of being faster than traditional
typing [2]-[4], voice-driven programming may also help al-
leviate pain caused by physical strain and prevent repetitive
stress injuries and other conditions such as carpal tunnel
syndrome [4]-[6]. Further, one of the major difficulties in
adoption of modeling techniques relates to the understanding

Uhttps://github.com/dictation-toolbox/aenea
Zhttp://vocola.net/

of abstraction. By introducing a voice-driven approach we
believe a wider variety of users will be able to leverage the
benefits of MDE.

The standard practice in Model-Driven Engineering (MDE)
is to develop system models using a conventional keyboard
and mouse, or whiteboard sketch recording and interpretation
systems [7]. Despite the abstract and collaborative nature of
software modeling, and the early success and potential benefits
of voice-driven programming, analogous voice-driven model-
ing techniques have not been explored or employed in any
significant way by researchers and practitioners. The nature
of MDE alleviates some of the issues caused by keyboard
entry through its use of abstraction and graphical modeling.
However, MDE-like navigation tasks, such as those modeled
by Fitts’ Law [8], can still succumb to variance and error that
can be avoided by modelers using a voice-driven technique.
Such techniques are pertinent as they can potentially benefit
modelers in general, modelers with physical disabilities, and
domain expert non-modelers.

In this position paper, we present our vision, current work-
in-progress, and plans to realize a framework for Voice-
Driven Modeling (VDM). We identify background research in
programming by voice from which we have and will continue
draw inspiration, and our efforts in ascertaining the state of the
art and related work in VDM. We describe our vision for a
VDM approach, our research plans and current status, and the
potential impact of our VDM approach and VDM in general
on the field of MDE.

II. BACKGROUND - VOICE-DRIVEN SOFTWARE
ENGINEERING

Voice-driven software engineering is not a new concept. The
first speech recognition system was created in the 1950s [9].
Since that time there have been numerous attempts to create
voice-driven systems to assist with software engineering by
creating program code.

The benefits in speed and accuracy have been well doc-
umented by researchers and studies [10], [11]. The average
typing speed of a user working with a keyboard on a daily
basis is 60-70 words per minute [12]. This is much slower than
the average of 107 words per minute that is typically witnessed
by users of speech recognition [3]. The error rate among key-
board users is also higher than that of voice input [13]. Verbal

input also allows the use of macros and special characters
without disrupting the flow of input. In contrast, keyboard and
mouse input often require movement of the hands off of the
keyboard home row for those same functions, leading to a
disruption of speed and accuracy. While MDE helps address
the concerns of speed and accuracy by reducing much of the
code entry process and replacing it with graphical modeling,
there are additional improvements to be gained from a voice-
driven approach. Fitts’ Law demonstrates the variance and
error in pointing devices and tasks [8], such as those necessary
in current MDE practice. Using a voice-driven approach is
likely to mitigate this variability and error in the modeling
process. This is something we aim to demonstrate further
through future validation experimentation of our framework
and tool implementation.

The use of the mouse and keyboard over long periods of
time is associated with repetitive stress injury (RSI) [5]. While
some studies have questioned the link between RSI and the
use of the mouse and keyboard, those studies have made some
fundamental assumptions that are not necessarily correct [14].
The use of the mouse in particular, which MDE modelers use
heavily, has been associated with bursitis in the elbow and
shoulder, capsulitis, and tendinitis, as well as carpal tunnel
syndrome [6], [15].

Some established uses of voice-driven software engineer-
ing through creation of program code include NatLink [16],
SPEED [17], voicecode.io [1], Vocola, and Aenea. NatLink is
a voice-driven python scripting environment created by Joel
Gould to extend Dragon Naturally Speaking to work well
in a software engineering context [16]. It is a foundational
project that is extended by VoiceCode, Vocola, and others.
Aenea is a project that extends NatLink to function in a client-
server environment [18]. It is commonly used by developers
to take verbally generated commands and transfer them across
a connection as if they were typed on a keyboard.

Andrew Begel of the Harmonia Research project at the
University of California at Berkeley developed SPEED [17].
This system uses a verbal interface to create Spoken Java code,
which is semantically similar to the standard Java language
and can be compiled by most standard Java compilers.

Motivated by his own repetitive stress injuries, Ben Meyer
developed VoiceCode to map specific verbal phrases to text
strings, macros, and actions, allowing chaining and nesting
of commands. It has pre-defined macros allowing explicit
integration with nine different code editors and theoretical
integration with any other editor, assuming that the user is
willing to create and test the appropriate macros.

Vocola is one of the most popular tools for voice-driven
software engineering in use today, and has a similar feature
set to SPEED and VoiceCode.

We have drawn inspiration from all the design and benefits
of these techniques in the creation of our VDM proposed
framework and will continue to do so in our first realization
and implementation of it.

III. RELATED WORK - STATE OF THE ART

In our survey, we found only two notable studies directly
related to voice-driven modeling. The first is a dissertation [19]
written in Portuguese with no English translation available.
We used machine translation to render an English version
for study. According to that translation, they developed a
supported approach of a tool to improve accessibility, and con-
sequently, to integrate a requirements engineer with physical
limitations in the activity of requirements elicitation. Based on
this and other text, the article appears to deal specifically with
requirements gathering for MDE by individuals with physical
disabilities. This differs from our VDM vision and framework
in that what we propose is for software modeling in all phases
of the software development life cycle, not just requirement
gathering. Further, our approach has multiple aims to improve
productivity among a variety of modelers with or without
disabilities as well.

The second is a project called ModelByVoice [20]. Mod-
elByVoice is a tool intended specifically to aid the visu-
ally impaired in modeling activities. It attempts to replace
modeling software tools such as Simulink. ModelByVoice
utilizes Google Cloud Speech-to-Text to accept input from
users and then uses FreeTTS to output text as audible words.
It is intended primarily to remove all graphical and textual
requirements from the modeling interface. By contrast, our
VDM vision and framework attempts to improve and innovate
software modeling for a much broader audience. While we are
working with Simulink as a baseline, our intent is to create
an approach that is ultimately portable to a variety of tools,
rather than replacing the modeling software as ModelBy Voice
attempts to do. Our work is intended to allow modelers with
a wider variety of disabilities than just visual impairments
to more easily perform software modeling, including but not
limited to modelers who experience difficulty with muscular
control or manual dexterity. Further, our intent is that all
software modelers will be able to use this tool to increase
the speed and ease in which they can perform modeling
tasks, as witnessed in the analogous voice-driven programming
approaches [10], [11]. Lastly, VDM is intended to make
software modeling more accessible to domain experts. We
elaborate on our intended audiences and the potential impact
VDM can have on them later in this paper.

Further applications of natural language processing (NLP)
to modeling exist, however they do not leverage the voice-
driven aspects proposed by our VDM framework. Arora et.
al. [21] present their approach to using NLP to extract domain
models from natural language system requirements. In their
work they are able to apply NLP to industrial requirements
documents and convert the textual inputs into domain models
of the system. Pérez-Soler et. al. [22] apply NLP to incre-
mentally build models using update commands, with a focus
on Social Networks for collaborative modeling. Both of these
approaches demonstrate the potential for NLP use in modeling
domains, and our VDM approach aims to improve upon these
successes to provide a generalized voice-driven approach to

model construction.

IV. OUR APPROACH TO VOICE-DRIVEN MODELING

In this section, we describe our VDM vision and framework
as we work toward implementing this research. We provide
an overview of VDM, details of the framework in its three
phases, why we believe our VDM ideas and vision are suitable,
potential pitfalls, and our current status and plans.

A. Overview

Our VDM framework consists of three main phases: Speech
Processing, NLP, and Context Specific Modeling. We present
a high level overview of the framework process in Figure 1.
We include a modular construction to allow for different
target modeling languages. The first two phases act primarily
as preprocessors for software modeling by first transforming
the voice to a textual input stream, and then performing
preliminary NLP to tokenize the input strings into meaningful
words and inputs in the modeling domain. From there, the
third phase targets a specific modeling language/tool, and
applies meaning to the tokens a VDM implementation has
created in phase 2. This allows for the possibility for VDM
plugins to incorporate many different modeling tools. As a
proof of concept to demonstrate the viability and correctness
of VDM, we have chosen to implement the first plugin within
the Simulink modeling environment in order to verbally create
and manipulate Simulink models. We elaborate on this in the
section that follows.

B. Details

In this section, we present lower-level details on the re-
spective phases within the VDM framework. We additionally
describe our plans and results in implementing VDM in its
early stages.

1) Phase 1: Speech Processing: The first phase of VDM is
the initial speech processing of voice commands from the user.
This phase primarily involves the reliance on conversion from
voice commands to a textual representation. In most cases,
we recommend VDM implementers rely on existing work on
voice-to-text translation and representations to encode spoken
commands into a string of text. This is due to the fact that
speech recognition is a well studied area [23], [24], with many
well vetted existing solutions. One added benefit of using
existing solutions is voice-to-text is a language independent
solution, meaning VDM users can speak commands in any
number of input languages that are supported by a VDM
implementation, requiring minimal additional preprocessing.
There are currently two options we are considering in imple-
menting multi-language support: using the speech processing
component to translate the input language to an English textual
representation in phase 1, or incorporating language support
into the NLP phase during phase 2. We present these options
in Figure 2 as a supplement to the overview in Figure 1. If we
rely on the speech processor in phase 1 to translate the phrases,
there is the potential issue of some important semantics being
lost in the standard translations. However, this option can

leverage the existing strong foundation of language support
tools. We discuss the second option further in our description
of the second phase, which follows.

In our initial implementation, we will handle this phase
through third party commercial software that is already tested
and capable of performing the translation from speech to a
stream of input text. We based our choice to use existing
software on our desire to remove as many possible failure
points as possible by relying on commercially developed and
tested speech recognition. To that end, we have opted to use
Dragon Naturally Speaking by Nuance 3, colloquially known
as Dragon Speak, to process the voice inputs and produce
streams of input text, which our VDM implementation will
then pass to the NLP phase of VDM. It is the top rated
speech recognition program; relatively affordable; and used
in professional settings include automobile voice command
software, medical domains, and more.

2) Phase 2: Natural Language Processing: The next phase
within VDM is to provide initial meaning to the spoken inputs.
As our goal is to modularize VDM to be useful in different
modeling contexts, this NLP phase is not meant to be aware of
the specific modeling actions that can be carried out. Rather it
is concerned with the general principles of model creation.
As such, the NLP phase will remove words that have no
direct impact on the modeling context and retain those with
semantic implications and intentions. For example, in data flow
modeling, the phrase “Add a constant block with the value
10.” may become ‘““add constant 10”, and “Add a class named
Person.” may become “add class Person”. Further, in order to
potentially support numerous input languages spoken by the
user, the NLP phase will also include an optional translation
step, to translate the text streams obtained in phase one
into their corresponding English commands. By including the
language translation during this phase of VDM, we are better
able to assign the appropriate modeling context to the non-
English language rather than relying on an external translation
that, while correct, may lose meaning in the MDE domain.
However, this requires knowledge of modeling terminology
in other languages, as well as the parallel implementation
of similar functionality in multiple languages. This becomes
imperative when we attempt to extend this approach to non-
modelers who do not speak English natively.

In order to implement NLP, we are still in the early phases
of exploration, but it is possible we may be able to leverage
existing solutions such as Amazon Lex?*, Google Natural
Language’, or Watson Natural Language Understanding®.

The end result of the NLP phase of VDM is to produce a
tokenized input string that contains only the relevant modeling
words that can be understood by a specific modeling context.
It is probable that this phase will include some normalization
of the ordering of the inputs to produce a standard set of input
tokens. For example, there should be no difference between

3https://www.nuance.com/dragon.html

“https://aws.amazon.com/lex/
Shttps://cloud.google.com/natural-language/
Shttps://www.ibm.com/watson/services/natural-language-understanding/

Class
Phase 1: Phase 2: Phase 3:
))) - Speech)y | Natural Language Context Specific | wai
Processing Text Processing (NLP) | Tokenized Modeling
Voice Input Stream Inputs Model Actions
Fig. 1. Voice Driven-Modeling (VDM) Overview
@ EEm— | el | e | el
))) -> Speech > —>{ Natural Language >0
m Processing _m_ Processing (NLP)
Multi Language Multi Language English Tokens
Voice Input Text Streams
(b) m Phase 1: Phase 2:
) > Speech > @ETTEII—— Natural Language | ——> ETTE
m Processing Processing (NLP)

Multi Language
Voice Input

Translated English English Tokens

Text Streams

Fig. 2. Two Options for Multi Language Support: (a) language aware NLP phase (b) reliance on speech processing translations

saying “add a constant of 10” and “add a 10 constant value”.
Ultimately, the actions taken on a model are generalizable,
regardless of the target. The specific objects may change,
but modelers are typically interacting with model elements in
a specific manner, for example, add, move, connect, change
value, et cetera. This generalization will assist in the tokeniza-
tion and normalization of inputs.

In order to realize NLP in phase 2 of the VDM framework,
we first intend to create a dictionary of modeling commands,
which will include synonymous words to allow flexibility
in the spoken commands. The initial dictionary will focus
on modeling concepts specific to our chosen modeling tech-
nologies as a proof of concept with the ability to expand
to a wider spectrum of modeling phrases and commands.
Initially our VDM framework implementation and tool will
work on English input only, but eventually with the support of
modeling practitioners fluent in other languages, we will look
to incorporate a translation sub-phase to expand the usefulness

of the VDM framework beyond English-speaking users.

Once we complete the dictionary, the next part of our
phase 2 framework realization will be the implementation
of a look-up function that will replace the spoken words
with the intended modeling concepts from the dictionary. The
intent is to leverage existing NLP solutions to remove “filler”
words and phrases from the spoken commands and leave only
words with semantic meaning in the modeling context. While
numerous techniques exist for NLP, our context likely will
not merit any heavy processing, as the target language of a
relatively small set of modeling words is quite manageable in
scale.

After iteratively applying NLP solutions to the input text
stream and using the dictionary as a look-up, the result will
be an ordered stream of tokens consumable by the third phase
to produce modeling actions in a specific context.

3) Phase 3: Context Specific modeling: The final phase
of VDM consists of taking the tokenized inputs and pro-

viding specific meaning to each of the tokens. This phase
requires detailed knowledge of the target modeling language
and environment in order to react to the input tokens. Given
the normalized structure of the inputs created in the second
phase, the context specific modeling phase must be able to rely
accurately on properly formatted input, and, if an unexpected
token is received, report this as an invalid command.

For each target modeling language, an independent im-
plementation is required. For each modeling language, the
implementation will take a different form, such as scripts
in the modeling language or applying source transformations
to the model file using a source transformation language,
for example, TXL [25]. Regardless of the target modeling
language, each spoken command must be reflected in real time
to the modeler by the VDM implementation so they are able
to observe their changes directly in the model on the screen.

With respect to the specifics of phase 3, regardless of
implementation, VDM tooling must be able to convert the
tokenized inputs into observable actions. For example, if the
user speaks the command “Add a Class called Person”, a VDM
tool must add a new class to the class diagram with that name.
However, if the user speaks a command without meaning to
the target environment, the tool should not introduce some
incorrect action and should inform the user that the command
was not implemented.

Because this phase relies on knowledge of the modeling
language and its capabilities, each individual implementation
will require in-depth knowledge of the target environment.
As such we initially begin with one environment as a proof
of concept and expand functionality based on other popular
modeling tools and technologies. We present our current status
in doing so in Section I'V-E.

C. Suitability

This section will address why we believe this particular
approach is suitable for realizing a VDM framework.

Based on the idea that each voice command issued by a
modeler is akin to a statement in a source code program, the
process of VDM can be considered programming a model”.
With that in mind, we felt it appropriate to model the approach
after that of a traditional compiler [26].

The first phase of VDM is the translation from the input
stream into an internally understandable format, similar to the
lexical analysis and parser phases of compilation. The second
phase has a VDM implementation provide semantic meaning
to the inputs, which is similar to the semantic analysis phase
of compilation. Finally, the context specific modeling phase
is akin to the target code generation phase of a compiler, in
which the intermediate representations produce output in a
target language. These similarities provide justification for the
3 phases we presented, as well as the suitability of our chosen
pipeline.

D. Potential Pitfalls

While we are confident in our plans to realize our VDM
implementation and tool, it is important to acknowledge poten-
tial pitfalls and hurdles we may encounter. An obvious hurdle

we will have to overcome is having established modelers
become comfortable using voice-driven techniques. Allowing
them to perform VDM in conjunction with traditional mod-
eling simultaneously may help with this. Additionally, in our
Simulink implementation, we can have a “toggle” option to
turn off the VDM option and also a facility to submit feedback
about the accuracy of the voice interpretation and subsequent
model operations. Another potential threat involves layout
and aesthetic considerations. Unlike voice-to-text software
programming, an important consideration is how the models
actually appear, visually. To address this at first, we propose
the use of best-practices making use of a grid-style layout.
Essentially our implementation will place any new blocks
surrounding the existing blocks, expanding from the top left
outwards, since typical Simulink models follow this flow. This,
along with the built-in ability to reposition blocks using voice
commands, as we demonstrated earlier should mitigate this
potential pitfall.

E. Current Status and Plans

In order to demonstrate the validity, viability, and potential
of our VDM vision and framework, we are currently develop-
ing a VDM tool implementation intended for Simulink mod-
eling. We chose Simulink due to a number of factors. These
include its popularity, applicability, and support. Simulink
is very popular in both university/academic and industrial
settings, making it an excellent choice for a first target
language as it will be easier to find a user base for validation
experiments. Beyond this, targeting a more “popular” language
allows us to observe usage in a wider variety of applications.
This leads perfectly into the second factor of our choice: appli-
cability. Since Simulink is used in various industries to create
a wide variety of models and software systems, our choice of
Simulink will help demonstrate the context independence of
VDM. Further, since there are a wider number of domains that
leverage Simulink, we will be better able to demonstrate that
VDM will alleviate the need for modeling specific knowledge
and relies primarily on the domain knowledge of the user.
Finally, the fact that Simulink is a commercially supported tool
makes it an ideal candidate for the first implementation of the
VDM framework. Rather than facing struggles of open-source
tools, we are able to focus on intent rather than implementation
issues. It is for these reasons that we have selected Simulink
for our initial proof of concept implementation of the VDM
framework.

For the first phase of our VDM proof of concept imple-
mentation, we have begun experimenting and familiarizing
ourselves with Dragon Speak and its speech recognition capa-
bilities. Specifically, we acquired Dragon Speak software and
purchased a high quality headset, the BlueParrott C400-XT
Noise Canceling Bluetooth Headset by Jabra, as it was very
well reviewed, has demonstrated success with Dragon Speech
Recognition, and was not prohibitively expensive.

We have not yet begun working on our VDM implemen-
tation of Phase 2, as the NLP relies on the text strings as
an input and we are still experimenting with Dragon Speak

TABLE I
EXAMPLE TOKENIZED INPUTS FOR A SIMULINK MODEL
1 “add” “inport”
2 | “add” “constant” | “10”
3 “move” “constant” | “down”
4 ‘4add5’ “Sum”
5 “move” “sum” “right”
6 | “connect” | “inport” “sum”
7 “connect” | “constant” | “sum”
8 “add” “outport”
9 | “move” “outport” | “right”
10 | “move” “outport” | “right”
11 | “connect” | “sum” “outport”
12 | “save”
ek
Il
/
. /
inport / sum outport
,/
//"
/
/
//
/
//
10
const10

Fig. 3. Example Simulink Model produced with commands from Table I

and its abilities. As an early proof of concept for Phase 3,
we have created Simulink scripts to process simulated input,
as if tokenized inputs were being received from a completed
phase 2. Our Simulink scripts process each line of tokens one
input at a time and then make decisions based on the inputs.
The structured input provides the action first, for example, add,
move, connect, or save. This is followed by the artifact(s) upon
which the actions are transpired.

Table I provides 12 example input commands that our
Simulink scripts are currently able to interpret and act upon for
a new blank model. Each row represents one spoken command,
totalling 12 commands.

By iterating over each of the commands found in Table I,
our early phase 3 implementation automatically produces and
saves the Simulink model we present in Figure 3.

A final area that we have yet to begin implementing is
foreign language support. We have identified two possible
options, each with the advantages and disadvantages we listed
earlier. We will need to chose one option to realize this
functionality.

Currently, our working prototype implements Phase 3 of the
VDM framework on a limited set of input streams, passed as
textual input to a Matlab script. This initial implementation
provides promising results for a first-pass prototype.

V. POTENTIAL IMPACT

While voice-driven programming techniques exist to lever-
age the power of NLP to produce functional source code,
there does not currently exist a reliable technique to apply
this to model-driven engineering. Our VDM framework pro-
poses leveraging the demonstrated success of voice-driven
approaches in the MDE domain.

Our VDM approach will be helpful to current model-
ers, enabling them to streamline the modeling process and
potentially increase the speed and efficiency at which they
can model systems. By removing the need to interface with
modeling tools through typical peripheral devices, a VDM
approach and tooling support will allow users to interact
with other artifacts such as requirements documentation or
specifications. In Agile development environments, a voice-
driven approach to modeling fits well with a pair programming
or rapid prototyping approach where a team of engineers could
theoretically all interact with the same model on the same
machine using only voice commands.

Another aim and impact we want is to broaden the user
group of those employing software modeling approaches.
Currently, the use of MDE techniques requires a non-trivial
amount of knowledge of MDE and its applications. However,
through VDM, much of that required knowledge is abstracted
leaving only the requisite domain knowledge and minimal
tool understanding as entry points. By opening the use of
modeling tools up to a wider audience, we are enabling
non-technical users to become software developers of their
own model-driven systems. Since the NLP phase will include
modeling-intuitive processing, users of the VDM framework
do not need to be overly familiar with modeling terminology
or practices. The user is able to describe their intent in domain-
familiar terminology, and the VDM framework will apply
MDE contexts to their commands, when possible.

Finally, another potential impact of our VDM approach is
the ability for those with disabilities to perform modeling
tasks. Whether this includes limited mobility, the inability
to use standard peripherals, or some form of vision impair-
ment, our VDM approach allows users that may otherwise be
hindered/unable to create models and leverage the benefits of
MDE approaches. While we have no data for such claims yet
other than existing analogous work in voice-driven program-
ming [4], our long term plans include doing user studies on
those with disabilities to better measure this impact.

We thus summarize the potential impact of the VDM
framework by highlighting the three target user groups:

o software modelers - technical users who would utilize
the technology to streamline the modeling process and
improve modeling efficiency

o domain-expert non-modelers - domain experts who are
not familiar with modeling, but are able to accurately
describe algorithms they wish to see modeled and imple-
mented

« modelers with disabilities - the technology will also be
assistive for those with mobility and other accessibility

issues to create models proficiently

VI. FUTURE DIRECTIONS

Through the realization of VDM, it is likely that we will
discover aspects of modeling that are not well suited for voice-
driven approaches. This is due current modeling tools not
being designed with voice commands in mind. Through our
implementation and validation of the VDM framework, there is
the potential that we may be able to inform modeling language
design decisions to better serve voice-driven approaches while
still maintaining the integrity of modeling fundamentals.

Beyond the application to general purpose modeling lan-
guage design, a further direction is the ability to inform the
design of domain-specific modeling through the creation of
languages that are geared towards voice-driven approaches.
This line of future work may yield a new field of language
design for domain-specific voice modeling.

Further, if VDM proves to be an efficient and effective
method of modeling, there is the potential for integration into
existing modeling tools, such as Simulink and the Eclipse
Modeling Framework, rather than existing as a standalone tool
sitting on top of other technologies.

VII. CONCLUSION

Voice-driven technology is advancing and being used in
increasingly innovative ways, including software code cre-
ation. MDE has yet to fully exploit voice-driven technologies
and its potential benefits as witnessed in voice-driven source
code creation including efficiency, accessibility for a variety
of disabilities, and the potential to alleviate some physical
ailments. To that end, we have presented our position on and
vision for voice-driven modeling and our ideas of a VDM
framework with the goals of creating a proof-of-concept tool
and igniting research in this area. We describe our VDM
framework through its 3 phases, and support its suitability
through the analogy of a traditional compiler. Our immediate
goal is to create an end-to-end solution for Simulink modeling
through verbal input in English, for which we outlined our
current research in its early stages and our future plans.
We contend that VDM and its associated research has the
potential to benefit software modelers in general, modelers
with disabilities, and non-modelers who are domain experts.
Further, the work on VDM has potential to influence the
design and evolution of future modeling language design to
better support voice-driven approaches. We believe this work
to be the first significant step towards making VDM a reality,
and look forward to discussing our new ideas and visions on
VDM with those at the workshop in order to elicit feedback,
suggestions, and concerns.

REFERENCES

[1] A. Désilets, D. C. Fox, and S. Norton, “Voicecode: An innovative speech
interface for programming-by-voice,” in CHI’06 Extended Abstracts on
Human Factors in Computing Systems. ACM, 2006, pp. 239-242.
M. English, “The efficiency of programming through automated speech
recognition,” Master’s thesis, Haverford College. Department of Com-
puter Science, 2015, http://hdl.handle.net/10066/17627.

[2]

[3]

[4]
[5

=

[6]

[7

—

[8]

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23

[24]

[25]

[26]

C.-M. Karat, C. Halverson, D. Horn, and J. Karat, “Patterns of entry
and correction in large vocabulary continuous speech recognition sys-
tems,” in Proceedings of the SIGCHI conference on Human Factors in
Computing Systems. ACM, 1999, pp. 568-575.

A. Nowogrodzki, “Speaking in code: how to program by voice,” Nature,
vol. 559, no. 7712, pp. 141-142, 2018.

D. Sharan, P. Parijat, A. P. Sasidharan, R. Ranganathan, M. Mohandoss,
and J. Jose, “Workstyle risk factors for work related musculoskeletal
symptoms among computer professionals in india,” Journal of occupa-
tional rehabilitation, vol. 21, no. 4, pp. 520-525, 2011.

A. Aarés, M. Dainoff, O. Ro, and M. Thoresen, “Can a more neutral po-
sition of the forearm when operating a computer mouse reduce the pain
level for visual display unit operators? a prospective epidemiological
intervention study: part ii,” International Journal of Human-Computer
Interaction, vol. 13, no. 1, pp. 13-40, 2001.

J. Whittle, J. Hutchinson, and M. Rouncefield, “The state of practice
in model-driven engineering,” IEEE software, vol. 31, no. 3, pp. 79-85,
2014.

I. S. MacKenzie, “Fitts’ law as a research and design tool in human-
computer interaction,” Human-computer interaction, vol. 7, no. 1, pp.
91-139, 1992.

M. Pinola, “Speech recognition through the decades: How we ended up
with siri,” Web log post. TechHive. IDGTechNetwork, vol. 2, 2011.

K. Jahandarie, Spoken and written discourse: A multi-disciplinary per-
spective. Greenwood Publishing Group, 1999, no. 1.

J.-F. NUNAMAKAR, A. Dennis, J. Valacich, D. Vogel, and J. George,
“Electronic meeting systems to support group work,” Communications
of the ACM, vol. 34, no. 7, pp. 40-61, 1991.

R. Bailey, “Human interaction speeds,” Disponibile in rete allindirizzo
http://webusability. com/article_human_interaction_speeds_9_2000. htm
(ultimo accesso 18.12. 2006), 2000.

J. Leggett and G. Williams, “An empirical investigation of voice as an
input modality for computer programming,” International Journal of
Man-Machine Studies, vol. 21, no. 6, pp. 493-520, 1984.

B. Rhode and W. Rhode, “Occupational risk factors for carpal tunnel
syndrome,” MOJ Orthop Rheumatol, vol. 4, no. 2, p. 00131, 2016.

C. Jensen, L. Finsen, K. Sggaard, and H. Christensen, “Musculoskeletal
symptoms and duration of computer and mouse use,” International
Jjournal of industrial ergonomics, vol. 30, no. 4-5, pp. 265-275, 2002.
J. Gould, “Implementation and Acceptance of NatLink, a Python-
Based Macro System for Dragon NaturallySpeaking,” in The Ninth
International Python Conference, 2001, pp. 5-8.

A. Begel, “Spoken language support for software development,” in
2004 IEEE Symposium on Visual Languages-Human Centric Computing.
IEEE, 2004, pp. 271-272.

Dictation-Toolbox, “dictation-toolbox/aenea,” Mar 2019.
Available: https://github.com/dictation-toolbox/aenea

F. J. T. Soares, “Uma abordagem para derivar modelos de requisitos
a partir de mecanismos de reconhecimento de voz,” Ph.D. dissertation,
Universidade Nova de Lisboa, 2014.

J. Lopes, J. Cambeiro, and V. Amaral, “Modelbyvoice-towards a general
purpose model editor for blind people,” in Third International Workshop
on Human Factors in Modeling (HuFaMo 2018). CEUR-WS, 2018, pp.
35-42.

C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer, “Extracting domain
models from natural-language requirements: Approach and industrial
evaluation,” in Proceedings of the ACM/IEEE 19th International Con-
ference on Model Driven Engineering Languages and Systems, ser.
MODELS ’16. New York, NY, USA: ACM, 2016, pp. 250-260.

S. Pérez-Soler, E. Guerra, J. de Lara, and F. Jurado, “The rise of
the (modelling) bots: Towards assisted modelling via social networks,”
in Proceedings of the 32Nd IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE 2017. Piscataway, NJ, USA:
IEEE Press, 2017, pp. 723-728.

D. Bijl and H. Hyde-Thomson, “Speech to text conversion,” Jan. 9 2001,
uS Patent 6,173,259.

P. Khilari and V. Bhope, “A review on speech to text conversion
methods,” International Journal of Advanced Research in Computer
Engineering & Technology, vol. 4, no. 7, 2015.

J. R. Cordy, “The txl source transformation language,” Science of
Computer Programming, vol. 61, no. 3, pp. 190-210, 2006.

S. Muchnick et al., Advanced compiler design implementation. Morgan
Kaufmann, 1997.

[Online].

