
Documenting Database Usages and Schema Constraints
in Database-Centric Applications

Mario Linares-Vásquez1,2, Boyang Li1, Christopher Vendome1, Denys Poshyvanyk1

1The College of William and Mary, Williamsburg, VA, USA
2Universidad de los Andes, Bogotá, Colombia

{mlinarev, boyang, cvendome, denys}@cs.wm.edu

ABSTRACT
Database-centric applications (DCAs) usually rely on datab-
ase operations over a large number of tables and attributes.
Understanding how database tables and attributes are used
to implement features in DCAs along with the constraints
related to these usages is an important component of any
DCA’s maintenance. However, manually documenting datab-
ase related operations and their asynchronously evolving
constraints in constantly changing source code is a hard
and time-consuming problem. In this paper, we present a
novel approach, namely DBScribe, aimed at automatically
generating always up-to-date natural language descriptions
of database operations and schema constraints in source
code methods. DBScribe statically analyzes the code and
database schema to detect database usages and then prop-
agates these usages and schema constraints through the call-
chains implementing database-related features. Finally, each
method in these call-chains is automatically documented
based on the underlying database usages and constraints.

We evaluated DBScribe in a study with 52 participants an-
alyzing generated documentation for database-related meth-
ods in five open-source DCAs. Additionally, we evaluated
the descriptions generated by DBScribe on two commer-
cial DCAs involving original developers. The results for the
studies involving open-source and commercial DCAs demon-
strate that generated descriptions are accurate and useful
while understanding database usages and constraints, in par-
ticular during maintenance tasks.

CCS Concepts
•Software and its engineering → Software mainte-
nance tools; Documentation;

Keywords
Database-centric applications, Documentation, SQL-data state-
ments, Schema constraints

1. INTRODUCTION
Database-centric applications (DCAs) are software sys-

tems that rely on databases to query, persist, and modify
records using database objects such as tables, columns, and
constraints, among others. These database objects represent
the underlying domain model of DCAs, including business
rules and terms. Modern DCAs contain databases (DBs)
comprised of a large number of tables and attributes, and
DCA architectures are commonly used for different types of
systems ranging from large enterprise systems to small mo-
bile apps [11,14, 25,38]. As for the communication between
DCAs and databases, DCAs use database connectivity APIs
(e.g., JDBC,) and object-relational mapping (ORM) frame-
works (e.g., Hibernate) to access and manipulate database
objects from source code entities that (i) are spread across
the entire system, or (ii) belong to a data access layer [13,40]
when DCAs follow a multilayered architecture.

Previous work extensively studied the co-evolution of source
code and DB schemas demonstrating that: (i) schemas evolve
frequently, (ii) the co-evolution oftentimes happens asyn-
chronously (i.e., code and schema evolve collaterally) [18,
24, 34, 49], and (iii) schema changes have significant impact
on DCAs’ code [18, 38, 49]. Therefore, co-evolution of code
and DB schemas in DCAs often leads to two types of chal-
lenging scenarios for developers, where (i) changes to the
DB schema need to be incorporated in the the source code,
and (ii) maintenance of a DCA’s code requires understand-
ing of how the features are implemented by relying on DB
operations and corresponding schema constraints. Both sce-
narios demand detailed and up-to-date knowledge of the DB
schema; however, there is an inherent gap between the skills
and activities performed by developers and DB administra-
tors. While developers are usually more knowledgeable of
DCAs’ internals and logic, DB administrators, in turn, are
more knowledgeable of the DB model and its evolution [49].
Hence, one critical artifact that developers need to be able to
maintain DCAs effectively is up-to-date and complete docu-
mentation of the DB schema and any constraints. However,
such documentation can be only obtained by navigating and
comprehending a multitude of constantly evolving DB arti-
facts (e.g., data dictionaries, schema models), which is pro-
hibitively tedious, error-prone and time-consuming task, in
particular, for large-scale DBs.

Source code comments are another source of documen-
tation that could help developers understand nuances of
the model and DB usages. However, recent studies on the
co-evolution of comments and code showed that the com-
ments are rarely maintained or updated when the respec-

tive source code is changed [21, 22]. In addition, a previous
study of 3.1K+ open source projects [36] demonstrated that
77% of source code methods invoking SQL-statements (e.g.,
CREATE, DROP, INSERT, SELECT, UPDATE) do not have header
comments; moreover, existing comments, rarely get updated
whenever related source code is modified. Despite the avail-
ability of DB schemas, two-thirds of 147 surveyed DCA
developers indicated that tracing DB schema constraints
(e.g., unique values, non-null keys, varchar lengths) along
source code method call-chains was a “moderate” or a “very
hard” challenge [36]. In addition, lack of usage of refer-
ential integrity in schemas impact the understanding of the
schemas [18], which is a common issue in open-source DCAs.
In our study of 3.1K+ open source DCAs (Section 2), we
found that only 23.29% use primary keys and 12.17% use
foreign keys in their schemas.

The main contribution of this paper is a novel approach,
DBScribe, aimed at automatically generating always up-to-
date documentation describing database-related operations
and schema constraints that need to be fulfilled by devel-
opers during software maintenance tasks. DBScribe stat-
ically analyzes the source code and database schema of a
given DCA in order to generate method level documentation
of the SQL-statements related to methods’ execution, and
the schema constraints imposed over these statements. The
documentation is generated for methods executing database
operations locally as well as for methods invoking the opera-
tions via delegation, which supports developers maintaining
different layers or modules of a DCA (e.g., data access or
GUI). To the best of our knowledge, this is the first work that
proposes a solution for automatically documenting source
code methods related to database operations in a DCA and
the corresponding schema constraints.

We validated DBScribe’s documentation in a study in-
volving 52 participants, who were asked to analyze those
in terms of completeness, expressiveness, and conciseness
(Section 5) for five open source DCAs. In addition, we val-
idated DBScribe by interviewing the original developers of
two commercial web-based DCAs from a Colombian com-
pany (Section 5). The results show that descriptions gen-
erated by DBScribe are considered to be complete, concise,
readable, and useful for understanding database usages and
constraints for a given DCA, in most of the cases. Moreover,
participants consider that this type of description is useful
mostly for maintenance tasks such as program comprehen-
sion, debugging, and documentation.

2. WHY DO WE NEED TO DOCUMENT DB
RELATED CODE?

In this section, we provide motivating examples from real-
world DCAs to illustrate some of the common problems that
developers face when maintaining DCAs. We also describe
the studies that we performed to understand developers’
preferences and practices while documenting DCAs.

2.1 Motivating Examples
Database operations in source code can be encapsulated

in data access layers or are spread across the whole sys-
tem when it lacks design patterns. In both cases, the high-
level features (and the corresponding business logic) pro-
vided by the DCAs might use/persist/modify data in dif-
ferent database objects. Therefore, a high-level feature im-

public ReturnPK createReturn(Handle userHandle, Handle languageHandle, SchedulePK
schedulePK, String versionCode) [...] {

[...]
 try{
 int versionId = getVersionId(con, versionCode);
 [...]
 if (returnId != -1 && hasVersion(con, returnId, versionId)) {

throw new FinaTypeException(Type.RETURNS_RETURN_NOT_UNIQUE);
}
ps = con.prepareStatement("select id from IN_RETURNS

 where scheduleID=?");
ps.setInt(1, schedulePK.getId());

 [...]
 if (returnId != -1) {

pk = new ReturnPK(returnId);
} else {

ps = con.prepareStatement("select max(id) from IN_RETURNS");
[...]
PreparedStatement insert = con.prepareStatement("insert into

 IN_RETURNS (id,scheduleId,versionId) values(?,?,?)");
 [...]
}
createDefaultValues(con, pk.getId(), versionId);
changeReturnStatus(userHandle, languageHandle, pk,

 ReturnConstants.STATUS_CREATED, " ", versionCode);
updateReturnVersions(con, String.valueOf(returnId));

} catch (RuntimeException e) {
log.error(e.getMessage(), e);
if (pk != null)

deleteReturn(pk, versionCode);
throw e;

} catch (FinaTypeException e) {
log.error(e.getMessage(), e);
if (pk != null)

deleteReturn(pk, versionCode);
throw e;

}
 [...]

}

Figure 1: FINA’s method fina2.returns.ReturnSess

ionBean.createReturn

plementation relies on different calls to database operations
that represent a call tree; the root of the call tree is a
method (often in the GUI) that triggers/starts the feature,
and methods with direct calls to SQL-statements or ORM
API methods are nodes in the tree at different levels. In ad-
dition to the combination of database operations, high-level
feature implementations depends on the constraints imposed
by the data model. In that sense, maintaining DCAs’ source
code requires understanding (i) the database operations that
are related to a feature, (ii) the source code methods expos-
ing the database operations at different layers in the system
architecture, (iii) the constraints imposed by the database
schema, (iv) the expected database constraints that are not
defined in the schema (e.g., when the schema does not use
foreign keys), and (v) the source code location where the
constraints should be handled or accounted for.

Moreover, inferring database schema constraints and un-
derstanding the database operations involved in a DCA fea-
tures is a challenging task, since less information about the
DB can be inferred from source code methods at higher lev-
els of the call-chains. We illustrate this case on two meth-
ods from two open-source DCAs: FINA 3.4.6 [2] and Xinco
rev.700 [10].

FINA is a system for Bank Supervision Authorities that
is used to collect data from banks and make decisions based
on the reports generated from the collected data. FINA
has been in active development since 2002, and the core
system uses a J2EE two layer (i.e., GUI and business) ar-
chitecture based on Enterprise JavaBeans 3.1. The schema
has neither referential integrity nor uniqueness constraints,
and it is composed of 52 tables and 261 attributes. For il-
lustration purposes, we analyzed manually the code of the
ReturnSessionBean.createReturn method; the code is de-
picted in Figure 1. String literals for SQL-statements are
highlighted in red. Apparently, only three database oper-
ations are performed on the same table IN_RETURNS. How-
ever, we found that the execution of the method may trigger
20 database-related operations (2 UPDATE, 12 SELECT, 3 IN-

SERT, 3 DELETE) on eight different tables when considering
delegated executions (see methods in bold in Figure 1). Ten

 public void deleteFromDB(boolean delete_this, XincoDBManager DBM,int userID)
 throws XincoException {
 int i=0;
 try {
 Statement stmt;
 fillXincoCoreNodes(DBM);
 fillXincoCoreData(DBM);
 for (i=0;i<getXinco_core_nodes().size();i++) {
 ((XincoCoreNodeServer)getXinco_core_nodes().elementAt(i))
 .deleteFromDB(true, DBM,userID);
 }
 for (i=0;i<getXinco_core_data().size();i++) {
 XincoIndexer.removeXincoCoreData([...]);
 XincoCoreDataServer.removeFromDB([...]);
 [...]
 }
 if (delete_this) {
 XincoCoreAuditServer audit= new XincoCoreAuditServer();
 stmt = DBM.con.createStatement();
 stmt.executeUpdate("DELETE FROM xinco_core_ace WHERE
 xinco_core_node_id=" + getId());
 stmt.close();
 audit.updateAuditTrail("xinco_core_node",new String [] {"id ="+getId()},
 DBM,"audit.general.delete",userID);
 stmt = DBM.con.createStatement();
 stmt.executeUpdate("DELETE FROM xinco_core_node WHERE id=" + getId());
 stmt.close();
 }
 DBM.con.commit();
 } catch (Exception e) {
 [...]
 }
 }

Figure 2: Xinco’s method com.bluecubs.xinco.

core.server.XincoCoreNodeServer.deleteFromDB

of those operations are performed in one-level chain (i.e., a
calls b, and the SQL-statement is in b), six of those opera-
tions are implemented via a two-level chain call (i.e., a calls
b,b calls c, and the SQL-statement is in c), and one opera-
tion is done in a three-level chain. According to the schema,
the only constraint is that the attribute NOTE in the table
IN_RETURN_STATUSES should not exceed 4,096 characters.

Another example is the XincoCoreNodeServer.delete-

FromDB method from Xinco rev.700 [9]. Xinco is a docu-
ment management system, which has been in active devel-
opment since 2004. The schema is composed of 23 tables
and 135 attributes, and it uses referential integrity. The
code of the method is depicted in Figure 2. A simple check
reveals that the method invokes deletion of rows on tables
xinco_core_ace, and xinco_core_node. However, five more
tables are involved in SQL-statements via delegated calls
(in bold). In total, 14 SQL-statements might be invoked
when this method is called (12 statements via delegation).
Six of those 14 statements are DELETE, four are SELECT, two
are INSERT, and two are UPDATE. Deletion of rows in tables
xinco_core_ace, and xinco_core_node are also performed
via a call to XincoCoreDataServer.removeFromDB. Surpris-
ingly, the analyzed method (XincoCoreNodeServer.delete-
FromDB), which has a signature describing a deletion opera-
tion, also includes insertions and updates. Concerning the
level of the delegated executions, there are seven call-chains
with level 2, and four with level 3. In addition, there are 24
different constraints that should be taken into account: nine
potential violations of referential integrity when inserting
into xinco_core_ace and xinco_core_node, 12 attributes
that should not be null, four potential violations of varchar
limits, and two attributes that should be unique.

These examples illustrate that the process of understand-
ing schema constraints and the SQL-statements associated
with each method is a challenging, time-consuming, and
error-prone task. While the schema of Xinco was useful for
identifying the constraints, FINA’s schema was not helpful
at all. In the latter, the relationships between tables are
managed by soft links, which makes understanding the code
and schema harder; however, having up-to-date documenta-
tion at method level describing the database operations that
are triggered (locally and via delegation) can reduce the time
involved in navigating the code, and help developers to (i)
understand methods’ purpose, and (ii) identify implicit re-

lationships and constraints in the database schema. The
examples also corroborate that code search and navigation
are necessary tasks for identifying relevant elements and the
context during software maintenance tasks [23,28,37]. In the
case of database-related code, maintenance tasks also require
understanding of the constraints and details behind feature
implementations involving DB operations, which adds even
more complexity to the task.

2.2 Studying Developers’ Preferences
In order to understand developers’ preferences and prac-

tices while documenting database usages and constraints in
source code, Linares-Vásquez et al. [36] surveyed develop-
ers of open-source DCAs. The main conclusions of the study
were that (i) documenting methods with database accesses
is not a common practice; and (ii) developers prefer to have
documentation of schema constraints in the schema itself or
external documentation, rather than in the source code. In
addition, despite the high confidence of surveyed develop-
ers on database documentation, around 66% of respondents
answered that tracing schema constraints along call-chains
in the source code (which is a common task faced by DCA
maintainers) is a moderate/very hard challenge.

We conducted a survey and asked 147 developers of open-
source DCAs the following questions: Do you (would you)
find method documentation, which help understanding the
database schema constraints and functional usage of a method,
beneficial for software evolution and maintenance tasks? and
Why?, where 85 (57.82%) participants responded “yes”, and
62 participants answered “no”. Table 1 summarizes the ra-
tionale behind these responses. We analyzed the textual
answers using qualitative coding; it is worth noting that in
some cases the rationale included more than one reason (i.e.,
more than one code). For the cases in which we were not
able to identify the rationale because the answers were not
clear, we coded the rationale as “Unclear”.

The answers describe different perspectives of DCA de-
velopers with a slight tendency towards accepting the idea
of methods’ documentation describing database usages and
schema constraints. Their preferences are directly related
to the strategies commonly used to maintain DCAs: (i)
changes are first done in the schema and then the source code
is adapted to schema changes (bottom-up); (ii) the source
code is modified first and then the schema is modified (top-
down); (iii) source code is modified without changing the
schema, but the code maintenance requires understanding
how the features are implemented using database operations
and which constraints are involved.

According to the positive answers, documenting database
usages and constraints at method level is considered to be
a good practice, and is particularly useful for program com-
prehension and maintenance. Some participants stated that:

“If the method accessing a certain part of the database isn’t
properly commented, it may take quite a bit of time to
go through each step of the code to figure out what it is
doing. If the method and how it is accessing the database
was properly documented, life for maintenance and general
development would be much easier.”

“Yes, because they help facilitate any communication re-
quired with the DB developers/admins, and help make up-
dating the code less of a headache.”

Also, this type of documentation can be useful for under-

Table 1: Summary of developer survey answers
Answer Rationale
Yes (85) Program comprehension (21), unclear (18), no

rationale (14), good practice (11), source code
maintenance (8), database model understanding
(7), database evolution impact analysis (4), doc-
umentation (3), errors prevention (3), schema
evolution understanding (1), debugging (1)

No (62) Not useful (9), unclear (8), preference for self-
documented code (8), schema is enough (7),
ORM (7), concerns separation (7), external doc-
umentation (6), collateral evolution and out-
dated comments (6), others (4)

standing the data schema and the impact of schema changes
in the code: “Methods do different things than databases. We
need documentation in both places.”; “Would help in noting
the restrictions if the database scheme is not available.”

Negative answers show “more radical” positions toward
the preference for self-documented code, lack of confidence
in the usefulness of this type of documentation, and a clear
separation between schema responsibilities and source code.
Seven answers point that the schema is enough for under-
standing database operations and constraints; seven answers
assert that annotations from ORM are sufficient; and seven
answers explicitly mention that database usages and con-
straints should be documented externally. The following
answer is a representative example of a negative position by
some developers: “Code is a more reliable source of truth.
Comments are not. If I would need such info I will trace
or walk from public API till DB layer”. Another interesting
reason, which was provided by the respondents is the one
noting that collateral evolution may lead to outdated com-
ments in source code: “Code is no place to document the
database schema. Tiny changes to the schema could make
all comments untrue.”; “The comments could be out of date;
check the database for the truth.” These answers (positive
and negative) support the need for an automated approach
for generating up-to-date and accurate documentation for
database usages and constraints at method level.

2.3 Referential Integrity in DCAs
We also investigated the frequency of DCA schemas with

referential integrity, motivated by a previous study describ-
ing an experience on integrating software for a primary care
research network with the OSCAR EMR system, where the
lack of relationships and documentation in the OSCAR DB
was an initial impediment to understand the schema [18].
Therefore, we mined the latest snapshots of 3,113 DCAs
looking for database schema files declaring primary and for-
eign keys. It is worth noting that all the 3,113 DCAs use
JDBC; therefore, the schema is not created automatically
in those DCAs, conversely to DCAs that delegate schema
creation to ORM frameworks.

We found a total of 5,086 SQL files declaring explicit pri-
mary key constraints and 2,196 SQL files declaring explicit
foreign key constraints in these 3,113 projects. The projects
contain multiple files representing the schema or multiple
dumps for several database engines or different schema snap-
shots; however, the SQL files define primary keys for only
725 projects (23.29% of the projects), and foreign keys dec-
larations were found only in 379 projects (12.17% of the
projects). Therefore, the lack of referential integrity is com-
mon in open-source DCAs, which might be a potential prob-

Database
server

Application
source code

Queries/Statements
detection

JSql
Parser

JDT AST
parser

1

JDT AST
parser

Call graphs
extractor
JDT AST

parser

2

DB SChema
constraints
extractor

3

DB usage
and

constraints
information
propagator

4

Descriptions
generator

5

Descriptions

Templates

Figure 3: DBScribe components and workflow.

lem for developers maintaining those DCAs similarly to the
case presented by Cleve et al. [18].

3. DBSCRIBE: DOCUMENTING DATABASE
USAGES AND SCHEMA CONSTRAINTS

DBScribe provides developers with updated documenta-
tion describing database-related operations and the schema
constraints imposed on those operations. The documenta-
tion is contextualized for specific source code methods; in
other words, the documentation is generated considering
the local context of the methods and the operations del-
egated through inter-procedural calls and the subsequent
call-chains that involve at least one SQL-statement. There-
fore, our method-level documentation can provide develop-
ers with descriptions that work at different layers for a given
DCA. Concerning the usefulness, we designed DBScribe to
help developers when (i) understanding how features are
implemented using SQL operations, and (ii) understanding
schema constraints that need to be satisfied in both spe-
cific methods of the source code and all the operations in-
volved. Also, DBScribe is suitable for on-demand execu-
tion by developers that require up-to-date documentation.
For instance, Table 3 lists the execution time in seconds
of DBScribe when running on a MacBookPro laptop with
a 2.4GHz Intel Core 2 Duo processor and 4GB of DDR3
RAM. While it took two authors of this paper 10 minutes
on average to analyze the examples in Figures 1 and 2, DB-
Scribe was able to analyze and generate complete documen-
tation for these two DCAs in 130.78 and 31.41 seconds, re-
spectively.

The architecture of DBScribe is depicted in Figure 3.
DBScribe’s workflow is composed of five phases: 1 SQL-
statements and the methods executing them are detected in
the source code statically; 2 a partial call graph with the
call-chains including the methods executing SQL-statements
(locally and by delegation) are extracted from the source
code statically; 3 database schema constraints are extracted
by querying the master schema of the database engine that
has an instance of the database supporting the DCA under
analysis; 4 the constraints and SQL-statements are prop-
agated through the partial call graph from the bottom of
the paths to the root; and 5 the local and propagated con-
straints and SQL-statements (at method-level) are used to
generate natural language based descriptions. Current DB-
Scribe’s implementation covers SQL-statements invoked by
means of JDBC and Hibernate API calls. Future work will
support other ORM frameworks such as JPA and iBATIS.

Each phase in DBScribe’s workflow is described in the fol-
lowing subsections; however, we first provide formal defini-
tions that are required to understand the proposed model:

• M is the set of all the source code methods/functions in
a DCA, and m is a method in M ;

M SQLL SQLDSQLLD

Figure 4: Sets of methods in a DCA. M is the set
of all the methods in the DCA, SQLL is the set of
methods executing at least one SQL-statement lo-
cally, and SQLD is the set of methods executing at
least one SQL-statement by means of delegation.

• SQLL is the set of methods m ∈M that execute at least
one SQL-statement locally (Figure 4);
• SQLD is the set of methods m ∈ M that execute at

least one SQL-statement by means of delegation through
a path of the DCA call graph (Figure 4);
• G is the call graph of a DCA involving all the methods

m ∈M , and GSQL ⊂ G is the call graph including only
the methods in SQLL∪SQLD. It means that GSQL is a
(partial) call graph of all the methods in M that execute
at least one SQL-statement locally or by delegation;
• P is the set of paths p (a.k.a., call-chains) starting at

any method mi ∈ GSQL and finishing at any method
mj ∈ SQLL. It is possible that the number of methods
in some p’s is equals to 1 (i.e., |pi| = 1); those cases
represent unused methods, or methods in a upper layer
of the DCA invoking SQL-statements. It is worth noting
that P can be a disconnected graph;
• The methods in a path p are an ordered set defined

by the binary relationship (represented with the sym-
bol <) between a callee and a caller. For instance, given
a method mi ∈ SQLL, mj a caller of mi, mk a caller of
mj , and so on, until all the methods in the path p are
exhausted, the ordered set is mi < mj < mk < ... < ms.
The position in the ordered set, is the attribute l, which
represents the “level” of the method in the path p, and
is in the range [0, |p| − 1]. In the example, the l value
for mi is zero, and the l value for mk is two. Conversely
to the level, the depth d of a method in a path is the
position in the ordered set but in the direction of callers
or callees; for instance, the level l of mi in our example
is zero, but the depth d is |p| − 1.
• QSm is the set of tuples qs = 〈literal, T,A, type〉 repre-

senting the SQL-statements executed locally in method
m. Each tuple qs has a SQL string literal, tables (T)
and attributes (A) from the database schema referenced
in the literal, and the SQL-statement type.

•
−→
Cm is the set of methods called by method m (i.e.,

callees), and
←−
Cm is the set of methods calling method

m (i.e., callers).

3.1 Detecting SQL-Statements
All the methods in M are analyzed by first identifying API

calls that execute SQL-statements; using this approach, we
avoid SQL-statements that are declared as strings but never
executed. In addition to the API calls detection, for the case
of Hibernate, DBScribe (i) analyzes configuration files and
map POJO classes to database tables and attributes, and
(ii) retrieves database constraints from XML mapping files
or annotations defined in Java POJO classes.

In order to identify db-related API calls, we traverse the
AST of each method in M ; during the traversal, we keep
a working map SV with all the String and StringBuffer

m1

m4 m5

m2

m6

m3

m7

l = 0 l = 1 l = 2 l = 3

Database usage propagation

{QSm1,Cm1}

{QSm4,Cm4}

{QSm2 U QSm1 U QSm4,

Cm2 U Cm1 U Cm4}
{QSm2 U QSm1 U QSm4,

Cm2 U Cm1 U Cm4}

{QSm4,Cm4}

Figure 5: Iterative propagation of database usage in-
formation over the ordered sets defined by the paths
in the partial call graph

variables instantiated in the method as well as the current
values. We update the variables in SV after a new initial-
ization or after a concatenation operation with the plus (+)
operator or the StringBuffer.append method.

During the traversal, we also keep track of invocations to
API methods that execute or prepare SQL-statements, e.g.,
Statement.execute, Statement.executeQuery, Statement.
executeUpdate, and Connection.prepareStatement. If the
String argument in the API call is a literal, we add the literal
to the list of SQL-statements QSm declared in the method
m; if the string argument is an infix expression or a variable
name, we infer the value of the argument by resolving the ex-
pression/variable state with the values in the map SV . The
String literals and inferred variable values are used to build
SQL literals, which are parsed by using the JSqlParser [3]
to identify the statement type, and the tables and attributes
involved in the SQL-statement (this information is required
to generate the textual descriptions as described in Section
3.3). Then, we add the resolved SQL-statement (i.e., lit-
eral, tables, attributes, and type) to the list QSm. One
limitation in this procedure is that we do not perform inter-
procedural analysis; thus, we do not resolve values that are
returned by inter-procedural calls or values passed as argu-
ments to the analyzed method (future work will be devoted
to inferring the SQL queries/statements by using symbolic
execution). This leads to cases in which some SQL literals
are not parsed by JSqlParser. For instance, Table 3 lists in
column “NP” those cases in which DBScribe was not able to
parse the SQL-statements in seven DCAs that we analyzed,
and column “S” lists the number of API calls that execute
SQL-statements. More details about DBScribe’s evaluation
are provided in Section 5.

The
−→
Cm and

←−
Cm sets for each m ∈ M are also collected

during the traversal to avoid a second pass on the DCA code.
Both sets are used to generate the GSQL graph required to
propagate SQL-statements and constraints.

3.2 Propagating Constraints and SQL-Statem-
ents through the Call Graph

DB schemas contain a set of constraints that need to be
fulfilled when realizing insertions, updates, or deletions on
the DB. For instance, changing/deleting the value of a col-
umn that serves as a foreign key in other tables cannot be
performed when there are references from other tables to
that column. As mentioned in Section 2, this type of con-
straints cannot be inferred easily from the source code, and
the constraints provide useful information that can help in
understanding source code methods in abstract layers that

Table 2: Subset of Templates used by DBSCRIBE to generate the database-related descriptions at method
level. Examples from the systems used in the study are also provided

Section: Local SQL-statements
Type Template Example
Header This method implements the following db-related

operations:
This method implements the following db-related operations:

Insert It inserts the 〈attr〉 attributes into table 〈table〉 It inserts the Username, Passwd attributes into table logindetails
Update It updates the 〈attr〉 attribute(s) in table 〈table〉 It updates the IsCurrent attribute(s) in table semester

Section: Delegated SQL-statements
Header This method invokes db-related operations by

means of delegation:
This method invokes db-related operations by means of delegation:

Query It queries the table(s) 〈table〉 via 〈method〉 It queries the table(s) People via the call-chain JobApplica-
tion.addApplicationDetails → Student.checkIfStudent

Delete It deletes rows from table(s) 〈table〉 via 〈method〉 It deletes rows from table(s) gradingsystem via a call to the
GradeSystem.deleteGrade method

Section: Schema constraints
Header Some constraints that should be taken into the

account are the following:
Some constraints that should be taken into the account are the fol-
lowing:

Varchar Make sure the strings to be stored in 〈table〉 do
not overflow the varchar limits: 〈limits〉

Make sure the strings to be stored in employee do not overflow the
varchar limits: 2 (Grade, Level), 100 (FileLocation, FileName)

Non-null Make sure the values in 〈table〉.〈attr〉 are not null Make sure the values in employee.Salary are not null

are not close to the DB (e.g., m7 in Figure 5). Therefore, in
addition to linking source code methods to SQL-statements,
we extract from the DB schema — by querying the master
schema in the DB server— the constraints that are defined
on the attributes and tables in the sets QSm, ∀m ∈ SQLL,
i.e., the constraints that apply to all the attributes and ta-
bles involved in SQL-statements executed by the methods in
the application. In particular, we extract the following con-
straints: (i) auto-numeric columns, (ii) non-null columns,
(iii) foreign keys, (iv) varchar limits, and (v) columns that
should contain unique values. Consequently, each method
m in SQLL has a list Xm of schema constraints that apply
to the SQL-statements executed locally by m.

Both QSm and Xm sets contain information for all of
the methods in SQLL; however, the methods in SQLL are
not the only methods that can benefit from documentation
describing DB usages and schema constraints. Developers
inspecting, using, or updating methods that execute SQL-
statements by means of delegation (see SQLD in Figure 4),
similarly to the motivating examples in Sec. 2.1, could re-
quire documentation describing DB usages and constraints
across all methods involved in the DB-related call-chains.
Thus, we propagate the information in the QSm and Xm

lists to all the methods in SQLD. Notably, methods in the
intersection of SQLL and SQLD have at least one local ex-
ecution of an SQL-statement and at least one by delegation.

To describe the propagation algorithm, we use Figure 5
as a reference. The figure depicts a partial call graph with
nodes representing source code methods and directed edges
going from a caller to a callee. The background color of the
nodes (the colors are the same from Figure 4) represents the
set to which each method belongs. For instance, light purple
is for methods in SQLL, light blue for methods in SQLLD,
and cyan for methods in SQLD. Only the methods in SQLL

(including SQLLD) execute SQL-statements locally.
The propagation is done iteratively by using the node level

l (see definition at the beginning of Section 3) as the iteration
index, until the maximum l in the call graph is reached. This
iterative execution over l assures that the values from meth-
ods with a lower level l are computed before the methods
with a level l+ 1. This step is required because one method
can have more than one callee in the graph GSQL. The nodes
(i.e., methods) with l = 0 are methods belonging to SQLL,

and, the lists QSm and Xm for those methods were com-
puted previously. However, the lists of queries/statements
and constraints that concern the methods with l > 0 are the
unions of the local QSm and Xm lists (if any) and the lists
propagated from the callees. For example, the node m2 calls
m1 and m4, and belongs to SQLLD, which means that m2

executes at least one SQL-statement locally and at least two
by means of delegation in m1 and m4. Therefore, the com-
plete sets of SQL-statements and constraints that concern
m2 are {QSm2 ∪QSm1 ∪QSm4} and {Xm2 ∪Xm1 ∪Xm4},
respectively. The case for the methods in cyan is different,
because they do not execute SQL-statements locally; conse-
quently, the set of SQL-statements that concerns a method
m in SQLD is the union of SQL-statements and constraints
from its callees, and the set of constraints that concerns
the method is the union of the constraints from its callees.
For example, m5 does not execute SQL-statements locally.
Hence, the SQL-statements and constraints that concerns
m5 are the same from its single callee m4. Note that we
do not perform branch analysis of source code in DBScribe;
we catch as many branches as possible, likely overestimat-
ing the results. In the future, we will rely on static analysis
techniques to improve the precision [16].

3.3 Generating Contextualized Natural Lan-
guage Descriptions

The final phase in DBScribe generates contextualized nat-
ural language descriptions by using predefined templates. In
general, a description for a method m in GSQL consists of
three parts: (i) a block (i.e., a header plus a list of sentences)
describing SQL-statements executed locally, (ii) a block de-
scribing SQL-statements executed by means of delegation
and the path in the call graph to the execution, and (iii) a
block describing the constraints that should be taken into
account as a result of the SQL-statements that are executed
locally or by delegation. DBScribe only generates descrip-
tions for methods that are related to database operations.

A subset of DBScribe templates is listed in Table 2, while
the complete list is provided in our online appendix [1]. Each
template has tokens identified with 〈...〉, which are replaced
with values from the sets of SQL-statements and constraints
that concern a method m. In the case of execution by dele-
gation, the templates include the token 〈method〉; this token

is replaced by a single method call (see template Delegation-
Delete) or by a call-chain that goes over a path from m to
the method, where the corresponding SQL-statement is ex-
ecuted. The sentences in the constraints paragraph are gen-
erated based on the SQL-statements concerning the method
m. For instance, the sentences generated with constraints-
related templates in Table 2 are only included if the method
executes insertions/updates locally or by delegation. Our
current implementation of DBScribe generates the descrip-
tions as HTML pages with hyperlinks to the methods in
the call-chains (as in the delegation-related sentences); this
allows for easy browsing and navigation of the call-chains.

4. EMPIRICAL STUDY
We conducted a user study to evaluate the usefulness of

DBScribe at generating descriptions for source code meth-
ods that execute SQL-statements locally, by means of dele-
gation, and the combination of both. The goal of this study
is to measure the quality of the descriptions generated by
DBScribe as perceived by developers. As for the context, we
used seven DCAs listed in Table 3. The first five systems are
open-source DCAs hosted at GitHub and SourceForge. The
last two DCAs are industrial web Java applications devel-
oped by a Colombian company (LIMINAL ltda). It is worth
noting that LOC reported in Table 3 only include .java files;
for instance, web side files like JSP, HTML and CSS were
not included. Also the numbers in columns “ML”,“MD”, and
“MLD” are the ones reported by DBScribe.

We selected subject systems with the following constraints
in mind: (i) the systems should rely on JDBC/Hibernate
and MySQL for the data access layer, since the current ver-
sion of DBScribe was designed to detect SQL-statements
from JDBC/Hibernate API calls and extract schema con-
straints from MySQL DBs, and (ii) the systems should per-
vasively use SQL-statements.

4.1 Research Questions
In the context of our study, we formulated the following

five research questions (RQ):

RQ1 How complete are the database usage descriptions gen-
erated by DBScribe?

RQ2 How concise are the database usage descriptions?
RQ3 How expressive are the database usage descriptions?
RQ4 How well can DBScribe help developers in understand-

ing database related source code methods?
RQ5 Would developers of DCAs use DBScribe descriptions?

RQ1 to RQ3 aim at measuring the quality of the de-
scriptions as perceived by developers that have explored the
source code and the database schema. RQ4 aims at identi-
fying whether the descriptions are useful for developers and
the software development tasks that can take advantage of
this type of description. RQ5 is for exploring the potential
usefulness of DBScribe for supporting DCAs and potential
adoption by industrial DCA developers and maintainers.

4.2 Data Collection
We used descriptions generated by DBScribe for methods

of the open-source DCAs in an open survey with students,
faculty, and developers. We randomly selected six methods
from each system (30 descriptions in total from five open-
source DCAs); in particular, we selected two methods from
the GUI layer that are at the root of method call-chains in-
voking SQL-statements, two methods that are leaves of the

Table 3: Systems’ statistics: Lines Of Code, TaBles
in the DB schema, # of JDBC API calls involv-
ing SQL-Statements, # of SQL statements that DB-
Scribe was Not able to Parse, # of Methods declaring
SQL-statements Locally (ML), via Delegation (MD),
Locally + Delegation (MLD), execution Time in sec.

System LOC TB S NP ML MD MLD T
UMAS [8] 32K 122 211 4 125 431 67 29.53
Riskit rev.96 [7] 12.7K 13 111 2 35 9 44 15.02
FINA 3.4.2 [2] 139.5K 52 710 26 312 118 99 130.78
Xinco rev.700 [9] 25.6K 23 76 15 26 22 21 31.41
OpenEmm 6.0 [5] 102.4K 68 200 110 73 12 1 104.78
System 1* 73.2K 53 398 27 262 660 24 71.07
System 2* 28.4K 24 164 8 106 247 44 40.13

call-chains (i.e., declare SQL-statements, but do not delegate
declaration/execution to other methods), and two methods
in the middle of the call-chains. This selection was aimed
at evaluating DBScribe’s descriptions at different layers of
DCAs’ architectures. Also, we limited the survey to six
descriptions per system to make sure our survey could be
completed in one hour to avoid an early survey drop-out.
For the evaluation, we relied on the same framework previ-
ously used for assessing automatically generated documen-
tation [19, 41, 46, 54]. Therefore, the descriptions were eval-
uated in terms of completeness, conciseness, and expressive-
ness. In addition, we sought to understand the preferences
of the participants concerning DBScribe’s descriptions.

We designed and distributed the survey using the Qualtr-
ics [6] tool. We asked participants to evaluate DBScribe’s
descriptions by following a two-phase procedure. In the first
phase, we asked developers to manually write a summary
documenting the SQL-statements executed (locally and by
means of delegation) as part of a call to a given source code
method and the constraints that should be considered by
developers when understanding that method. In particular,
each developer was provided with the source code of the
DCA, an entity-relationship diagram, and six source code
methods to document; we also provided the SQL script to
create the database schema as an optional artifact that can
be used during the task. We decided to use only six methods
per DCA, because writing each summary requires detailed
inspection of the source code and the databases. This phase
was designed to make sure that the participants understood
the source code before evaluating DBScribe’s descriptions.

In the second phase, we asked participants to compare
their own (manual) summaries to DBScribe’s descriptions.
For each DBScribe description, the participants rated the
three quality criteria (i.e., completeness, conciseness, expres-
siveness) with the options listed in Table 4. In addition,
we asked them to provide a rationale for their choices; the
evaluation criteria and the rationale provided the answers
to RQ1 to RQ3. For RQ4, we included two questions re-
garding the usefulness of the descriptions in the survey. To
measure the programming experience of the participants, we
included background/demographic questions [20].

For the case of the industrial systems (i.e., RQ5), two
original developers of System 1 and System 2 from LIM-
INAL ltda [4] were interviewed. We provided them with a
complete DBScribe report (i.e., an HTML page with descrip-
tions for all the methods with hyperlinks) and asked to read
the report and analyze the code. The report also organizes
the methods in the three groups in Figure 4 to enable easier
browsing. While all the reports for the open-source DCAs

are provided in our online appendix, we were not allowed to
publicize the reports for the industrial DCAs.

During the interview, in addition to the questions from
the open survey, we asked the following: (i) Only focusing
on the content of the document without considering the way
it has been presented, do you think all the database-related
methods are listed in the document? ; (ii) Is the document
useful for understanding the database usages in the system?,
(iii) How could we improve the document?; (iv) What kind
of information would you like to include/remove?

4.3 Threats to Validity
In order to reduce the threats to internal validity and

maximize the reliability of the results of evaluation, we con-
firmed that the participants explored and understood the
source code before evaluating the summaries generated by
DBScribe. In terms of evaluation, we used a well-known
framework that has been applied previously to evaluate the
quality of natural language summaries of software artifacts.
Also, in order to avoid any type of bias because of the ex-
pectations of the participants during the study, we informed
the participants that they had to evaluate generated descrip-
tions only after completing the phase in which they needed
to write their own summaries. Concerning the threats to
external validity, we do not assert that the results in the
second study apply to the entire community of Java devel-
opers. However, the set of participants is diverse in terms of
academic/industry experience, and 42.3 percent of the par-
ticipants have more than five years of experience in Java. Al-
though the study was done on only five open-source and two
industrial DCAs, when designing the study we selected a di-
verse set of source code methods belonging to different layers
of the systems’ architecture, which means that we evaluated
methods executing SQL queries/statements locally, through
delegation, and a combination of both.

5. EXPERIMENTAL RESULTS
We obtained responses from 52 participants: 15 responses

for both UMAS and Riskit, eight responses for Xinco, and
seven responses for the other two open-source DCAs, Open-
emm and Fina. In terms of background, we had the following
distribution: three undergraduates and thirty-five graduate
students (M.S/Ph.D), two post-docs, seven developers/in-
dustry researchers, and five faculty members. Three par-
ticipants participated in the study twice (voluntarily), i.e.,
they analyzed the descriptions for two different systems. 24
of our participants (46.1%) asserted that they had past expe-
rience in industry. Concerning the programming experience
in Java, 22 of participants (42.3%) had at least five years of
experience; the mean value is four years of experience.

We evaluated the quality of DBScribe generated descrip-
tions by considering three attributes: completeness, concise-
ness, and expressiveness. For completeness, we aimed at
assessing whether the descriptions cover all the important
information (RQ1). For conciseness, we aimed at evalu-
ating whether the descriptions contain useless information
(RQ2). For expressiveness, we aimed at checking whether
the descriptions are easy to understand (RQ3). Since we
asked participants to evaluate three attributes for six de-
scriptions for each DCA, we had a total of 312 answers for
each attribute (6×52). Table 4 reports both raw counts
and percentages of answers provided by the participants;
detailed results are also available in our online appendix [1].

Table 4: Distribution of the Participants’ Responses
Criteria Options Responses

Completeness
•Does not miss any important info
•Misses some important info
•Misses most important info

205 (65.7%)
91 (29.2%)
16 (5.1%)

Conciseness
•Contains no redundant info
•Contains some redundant info
•Contains a lot of redundant info

221 (70.8%)
77 (24.7%)
14 (4.5%)

Expressiveness
• Is easy to read
•Is somewhat readable
•Is hard to read and understand

241 (77.3%)
60 (19.2%)
11 (3.5%)

RQ1 (Completeness): The results show that 65.71%
answers agreed that DBScribe’s descriptions do not miss any
important information, while only 5.13% answers indicated
the documents missed the most important information. In
other words, our approach is able to generate DB-related
descriptions for source code methods that cover all essential
information in most of the cases (RQ1). We also examined
answers with the lowest ratings. One comment mentioned:
“The description does not make it clear that the time-slot is
not always added to the table.” The reason for this comment
is that we did not apply branch analysis when generating
descriptions. However, this would not influence the com-
pleteness, since we chose to over-approximate in order to
catch important information.

When comparing the summaries written by participants
to DBScribe’s descriptions, we found that only 24 out of
312 human-written descriptions include specific information
about the schema constraints. Most of the human-written
descriptions (i.e., 5 out of 7 for RiskIt) detailing constraints
correspond to the methods at the lowest level of the call-
chains (i.e., the methods executing statements locally). These
findings corroborate our hypothesis that the methods in the
higher levels in the call-chains may be more difficult to un-
derstand with respect to relevant DB operations and the
schema constraints (Section 2). Therefore, DBScribe de-
scriptions are not only useful for methods that are architec-
turally close to the DB, but also for source code methods in
layers that are more close to the end-user (e.g., GUI layer).

RQ2 (Conciseness): 70.83% of the answers asserted
that DBScribe’s descriptions do not contain redundant in-
formation and only 4.49% answers indicated that the de-
scriptions contain a lot of redundant information.

Again, we examined the answers with the lowest ratings.
Participants’ comments included the following: “This data
feels too low level.” We closely checked our generated doc-
uments for those methods. Our observation is that DB-
Scribe’s documentation sometimes contains unnecessary in-
formation for the task we assigned. The extra information is
unavoidable because the documentation is produced without
taking into account a particular task on which a developer
may be working. In addition, since we provided call-chains
in the documentation, the descriptions for methods in the
top level of the call hierarchy may appear rather verbose.
For example, most of low ratings (10 out of 14) were for
the descriptions of methods situated in the middle or higher
levels of call-chains.

RQ3 (Expressiveness): in 77.24% of the answers, DB-
Scribe’s descriptions were evaluated as easy to read, while
only 3.53% answers indicated that the descriptions were
hard to read. We analyzed the user feedback from the par-
ticipants who provided the lowest ratings for expressiveness.
Those participants who thought some descriptions were hard

to read claimed that the descriptions had a lot of informa-
tion. Similar to Conciseness, our descriptions are attempt-
ing to capture more important information, which may come
at the expense of expressiveness. We also observed that
there were only two out of 11 responses with the lowest rat-
ing for the methods situated in the lowest level of call-chains
over all systems. Thus, descriptions for methods only invok-
ing SQL-statements locally are the easiest to read.

The following comments illustrate some of the reasons why
participants evaluated DBScribe’s descriptions mostly posi-
tively (completeness, conciseness, and expressiveness):

“It is useful when we need to know all the entities (i.e.
tables, constraints, indexes, etc) involved in a database
operation. This information helps a lot if someone needs
to modify/extend the code.”

“This description definitely outperformed the description
that I just made. The details shown by this description
really help to understand all the entities involved in the
creation of a new user, and this information is helpful
when someone tries to modify/extend the source code.”

“It summarizes the database accesses efficiently that might
be spread over many different methods. Even if all related
database operations are contained in the respective method
directly, the summary is much easier to read than finding
the specific statements in the code.”

“The generated summaries are useful because they show all
related db operations and also show another information
related with the constraints, data types. With the con-
straints and validations allows to developer to understand
any business logic restrictions.”

RQ4 (User preferences): 48 participants (92.3%) claim-
ed that DBScribe generated descriptions would be useful for
understanding the database usages in source code methods.
When looking into the details for each system, we found
that 100% of the answers were positive for UMAS, Xinco, and
Openemm; we got three negative responses for RiskIt and one
negative response for Fina. Although we do not have enough
evidence to claim a relationship between users preferences
and the type of DCA system for which descriptions are gen-
erated, the results suggest that DBScribe is more helpful
specifically for DCAs with larger DBs and more complex
chain-calls. In our case, Riskit has less complicated call
hierarchy and database design than others (see Table 3).

We also asked the participants for which software engi-
neering tasks they would use these descriptions. We catego-
rized the answers in Table 5. The most answered tasks are
related to incremental change, such as program comprehen-
sion, implementing new features, and impact analysis. The
second most reported category is “Bugs”, where participants
mentioned debugging six times, and bug fixing four times.
Examples of the answers are:

“This information can be useful when:-I need add a new
feature, I can understand the related db actions of any
existing method.-To fix a bug. To build a business process.”

“Understanding the code in general. I could also imagine
that it is particularly helpful for debugging database-related
errors (wrong updates, wrong implications drawn from the
data) as well as performance problems due to unnecessary
database queries.”

Table 5: Answers to “What software engineering
tasks will you use this type of summary for?”
Category Subcategories
Incremental
change (21)

Program comprehension (11), Add new features
(4), Impact analysis (4), Concept location (1),
Change database schema (1)

Bugs (10) Debugging (6), Bug fixing (4)
Maintenance
(10)

Maintenance (4), Refactoring (2), Re-
modularization (2), Re-engineering (2)

Others (15) Documentation (9), Change db-related code (3),
Test cases design (2), Systems integration (1)

“Bug fixing (to find out useful information possibly related
with the bug) and refactoring/remodularization (in order
to make sure that modification will not invalidate some
constraints)”

RQ5 (Usefulness and adoption for maintenance of
real DCAs): Two practitioners from LIMINAL ltda an-
alyzed the reports generated by DBScribe for two indus-
trial DCAs. Both systems were developed using a multi-tier
web architecture and MySQL as the database engine. The
database schemas use referential integrity. System 1 uses
JSP, CSS and Javascript for the presentation tier; a set of
servlets operates as controllers between the web components
and a tier of business entities that implement the logic and
persistence operations. System 2 uses Java Server Faces for
the presentation tier; JSF Beans and a JSF Front Controller
are used as controllers between the GUI and application
services (i.e., business tier); the application services invoke
database operations by means of a persistence tier imple-
mented with JDBC Data Access Objects; Value Objects are
used to transfer data over all the tiers. System 1 has been
in production for about ten years, and System 2 has been in
production for over seven years. Both systems are currently
maintained by LIMINAL ltda.

Concerning the practitioners, their current positions are
project managers, but they were the original developers of
both systems. They have ten years of industrial experience
developing Java web applications. One of the practitioners
asked us to anonymize his name; thus, we refer to him as
Practitioner 1. The second practitioner is Néstor Romero,
who also was the developer in charge of System 2’s mainte-
nance for one year. We asked both practitioners to indicate
the architectural layer(s) in which they are more proficient:
Practitioner 1 responded “Business Layer, Data Access, and
Utilities”, Néstor responded “GUI and Business Layer”.

Both practitioners ranked completeness, conciseness, and
expressiveness for the two reports, giving them the highest
values (i.e., does not miss any important info, contains no
redundant info, is easy to read). Also, both agreed positively
on the usefulness of the reports. For instance, Néstor noted
“Based on the descriptions you can be aware all dependencies
a table could have. It would let you estimate in a better way
the impact due to future changes.”; “The text provided helps
to create a basic understanding of the functionality”. With
respect to the software engineering tasks, they would use
the reports for program understanding, impact analysis, and
technical documentation. In particular, they mentioned: “It
helps you create a quick vision of the system with the basic
method and code structure without looking at actual source
code”; “Creating a data - dictionary for a system”.

Finally, both practitioners agreed on features for improv-
ing navigation features in the reports. For instance, Partici-
pant 1 claimed “It would be useful to search a table name in

order to see what dependencies it has”, and Néstor claimed
“The link system for call-chains works only in one way, one
could get lost navigating a complex system as there is no
visual or textual reference of my location within the entire
document. A navigation tree might be useful in this case.”
Practitioner 1 augmented the response with some desirable
features: “you should extend the approach to include JPA”,
and “it would be better to have it in the IDE, something like
right click->generate”.

Summary of the results: The DBScribe’s descriptions
are complete, concise and readable, in most of the cases. The
participants consider the descriptions to be useful for under-
standing the DB usages in DCAs. Moreover, this type of
descriptions is useful for understanding DB related source
code. Concerning software engineering tasks, the partici-
pants consider that the summaries can be mostly useful for
incremental change-related tasks, debugging, and bug fixing.

6. RELATED WORK
Previous work related to DBScribe can be summarized in

three different clusters: studies on analyzing co-evolution of
DCA schemas and source code, automatic inference of rela-
tionships from database schemas, and automatic documen-
tation/summarization of software artifacts. In the following,
we describe those works and their relationship to DBScribe.

6.1 Co-evolution of Schema and Code
Recent studies showed a presence of strong evolutionary

coupling between database schemas and source code [24,38,
49, 53]. Maule et al. used program slicing and dataflow-
based analysis to identify the impact of database schema
changes [38]. Qiu et al. conducted an empirical study into
co-evolution between DB schemas and source code demon-
strating that DB schemas frequently evolve with many dif-
ferent types of changes at play [49]. Sjøberg mainly focused
on database schema changes and presented a technique for
measuring the changes of database schemas; a study on
health management systems over several years showed addi-
tions and deletions to be the most frequent operations [53].
Cleve et al. presented a method to analyze the change his-
tory of DBs [18]. These studies and findings serve as our
main motivation for developing DBScribe to help developers
understand evolving DB usages and schema constraints.

6.2 Inferring Database Relations
The approach by Petit et al. first extracts DB table names

and attributes from the DB schema; then, it builds semantic
relationships between the entities by investigating set and
join operations [48]. Alhajj et al. designed an algorithm
to identify candidate and foreign keys of all relationships
from a legacy DB [12]. Another group of studies focused
on analyzing data in DBs and extracting associative con-
straints [11, 31]. The associative rule mining problem was
first introduced by Agrawal et al., where the associative rule
mining algorithm is able to generate a set of implications
A → B based on a given relational table [11]. Au et al.
applied a fuzzy association rule mining technique to a bank
DCA and identified some hidden patterns in the data [31].
Li et al. used association rule mining to correct semantic er-
rors in generated data [32]. These approaches represent an
extension opportunity for DBScribe, since the relationships
between DB objects can be inferred even when schemas lack
referential integrity. We will extend DBScribe to automati-

cally infer such relationships as part of the future work.

6.3 Documenting Software Artifacts
Buse and Weimer proposed an approach for generating

human-readable documentation of exceptions in Java [16].
More specifically, they used a method call graph and sym-
bolic execution techniques to extract conditions of excep-
tions [16]. Then, they used predefined templates for gener-
ating natural language comments. Sridhara et al. [55], and
McBurney and McMillan [39] designed approaches for auto-
matically generating method comment summaries. Moreno
et al. later extended the scope of the comment generation
to class level granularity [41, 43]. Rastkar et al. proposed
summarization techniques for describing crosscutting con-
cerns [50, 51]. Other artifacts have also been in focus of
summarization/documentation techniques such as code frag-
ments [57, 58], bug reports [52], unit test cases [27, 33, 46],
and developer discussions [45,56].

Differently from the previous work, a number of papers
focused on documenting differences between program ver-
sions [15,17,19,26,35,42,44,47]. Linares-Vásquez et al. im-
plemented a tool for automatically generating commit mes-
sages [19, 35]. Moreno et al. introduced an approach for
automatic generation of release notes of Java systems [42].
Jackson and Ladd built a tool SematicDiff, which uses pro-
gram analysis techniques for summarizing semantic differ-
ences between two versions of a system [26]. Kim et al.
proposed and approach to infer structural differences and
describe the changes by using logic rules [29, 30]. Buse
and Weimer proposed another approach for generating doc-
umentation for program differences based on symbolic ex-
ecution [15]. However, none of the existing approaches fo-
cus on generating DB-related descriptions; DBScribe is the
first to analyze source code and DB schemas for generating
method-level documentation to support DCA maintenance.

7. CONCLUSION
We presented DBScribe, a novel approach for automati-

cally generating natural language documentation at source
code method level that describe database usages and con-
straints for a given DCA. The descriptions are generated by
detecting methods executing local SQL-statements and then
propagating the schema constraints through all the methods
that execute the SQL-statements by means of delegation.
To evaluate DBScribe, we conducted a study involving 52
participants in which we asked them (i) to rate the com-
pleteness, conciseness, and expressiveness of the summaries,
and (ii) to describe the usefulness of the summaries. We also
asked developers from a Colombian company to evaluate the
documentation we generated for two of their DCAs. The re-
sults show that DBScribe descriptions are useful for under-
standing database usages and constraints across a given sys-
tem, and the descriptions can be used for supporting main-
tenance of DCAs’ code. DBScribe provides a solution to a
challenging and common problem by relying on static anal-
ysis of source code and database schemas, and automatic
documentations techniques. DBScribe currently supports
systems using the JDBC and Hibernate APIs; therefore, fu-
ture work will support SQL-statements executed with other
ORM frameworks and database engines. We will improve
the SQL-statement detection by resolving SQL literals in
source code that are declared with values returned by inter-
procedural calls or passed as arguments to methods.

8. REFERENCES
[1] Dbscribe online appendix. http:

//www.cs.wm.edu/semeru/data/ISSTA16-DBScribe.

[2] Fina http://sourceforge.net/projects/fina/.

[3] Jsqlparser. http://jsqlparser.sourceforge.net/.

[4] Liminal ltda http://www.liminal-it.com/.

[5] Openemm e-mail & marketing automation
http://sourceforge.net/projects/openemm/files/
OpenEMM%20software/OpenEMM%206.0/.

[6] Qualtrics. http://www.qualtrics.com.

[7] Risk it repository.
https://riskitinsurance.svn.sourceforge.net.

[8] Umas repository. https://github.com/
University-Management-And-Scheduling.

[9] Xinco rev 700
http://sourceforge.net/p/xinco/code/700/tree/trunk/.

[10] Xinco http://sourceforge.net/projects/xinco/.

[11] R. Agrawal, T. Imieliński, and A. Swami. Mining
association rules between sets of items in large
databases. In ACM SIGMOD Record, volume 22,
pages 207–216. ACM, 1993.

[12] R. Alhajj. Extracting the extended entity-relationship
model from a legacy relational database. Information
Systems, 28(6):597–618, 2003.

[13] D. Alur, D. Malks, and J. Crupi. Core J2EE Patterns:
Best Practices and Design Strategies. Prentice Hall
Press, Upper Saddle River, NJ, USA, 2nd edition,
2013.

[14] K. Bakshi. Considerations for big data: Architecture
and approach. In Aerospace Conference, 2012 IEEE,
pages 1–7. IEEE, 2012.

[15] R. Buse and W. Weimer. Automatically documenting
program changes. In ASE’10, pages 33–42, 2010.

[16] R. P. Buse and W. R. Weimer. Automatic
documentation inference for exceptions. In Proceedings
of the 2008 international symposium on Software
testing and analysis, pages 273–282. ACM, 2008.

[17] G. Canfora, L. Cerulo, and M. Di Penta. Ldiff: An
enhanced line differencing tool. In Proceedings of the
31st International Conference on Software
Engineering, pages 595–598. IEEE Computer Society,
2009.

[18] A. Cleve, M. Gobert, L. Meurice, J. Maes, and
J. Weber. Understanding database schema evolution:
A case study. Science of Computer Programming, 97,
Part 1:113 – 121, 2015. Special Issue on New Ideas
and Emerging Results in Understanding Software.

[19] L. F. Cortés-Coy, M. Linares-Vásquez, J. Aponte, and
D. Poshyvanyk. On automatically generating commit
messages via summarization of source code changes. In
Source Code Analysis and Manipulation (SCAM),
2014 IEEE 14th International Working Conference
on, pages 275–284. IEEE, 2014.

[20] J. Feigenspan, C. Kästner, J. Liebig, S. Apel, and
S. Hanenberg. Measuring programming experience. In
ICPC’12, pages 73–82, 2012.

[21] B. Fluri, M. Wursch, and H. Gall. Do code and
comments co-evolve? on the relation between source
code and comment changes. In Reverse Engineering,
2007. WCRE 2007. 14th Working Conference on,
pages 70–79, Oct 2007.

[22] B. Fluri, M. Würsch, E. Giger, and H. C. Gall.
Analyzing the co-evolution of comments and source
code. Software Quality Journal, 17(4):367–394, 2009.

[23] T. Fritz, D. C. Shepherd, K. Kevic, W. Snipes, and
C. Bräunlich. Developers’ code context models for
change tasks. In 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
FSE 2014, pages 7–18, New York, NY, USA, 2014.

[24] M. Goeminne, A. Decan, and T. Mens. Co-evolving
code-related and database-related changes in a
data-intensive software system. In Software
Maintenance, Reengineering and Reverse Engineering
(CSMR-WCRE), 2014 Software Evolution Week-IEEE
Conference on, pages 353–357. IEEE, 2014.

[25] M. Grechanik, C. Csallner, C. Fu, and Q. Xie. Is data
privacy always good for software testing? In
ISSRE’10, pages 368–377, 2010.

[26] D. Jackson and D. A. Ladd. Semantic diff: A tool for
summarizing the effects of modifications. In Software
Maintenance, 1994. Proceedings., International
Conference on, pages 243–252. IEEE, 1994.

[27] M. Kamimura and G. Murphy. Towards generating
human-oriented summaries of unit test cases. In 2013
IEEE 21st International Conference on Program
Comprehension (ICPC), pages 215–218, May 2013.

[28] K. Kevic, T. Fritz, and D. Shepherd. Comogen: An
approach to locate relevant task context by combining
search and navigation. In IEEE International
Conference on Software Maintenance and Evolution
(ICSME), pages 61–70, Sept 2014.

[29] M. Kim and D. Notkin. Discovering and representing
systematic code changes. In Proceedings of the 31st
International Conference on Software Engineering,
pages 309–319, Washington, DC, USA, 2009. IEEE
Computer Society.

[30] M. Kim, D. Notkin, D. Grossman, and G. Wilson.
Identifying and summarizing systematic code changes
via rule inference. IEEE Transactions on Software
Engineering, 39(1):45–62, 2013.

[31] C. M. Kuok, A. Fu, and M. H. Wong. Mining fuzzy
association rules in databases. ACM Sigmod Record,
27(1):41–46, 1998.

[32] B. Li, M. Grechanik, and D. Poshyvanyk. Sanitizing
and minimizing databases for software application test
outsourcing. In Software Testing, Verification and
Validation (ICST), 2014 IEEE Seventh International
Conference on, pages 233–242. IEEE, 2014.

[33] B. Li, C. Vendome, M. Linares-Vásquez,
D. Poshyvanyk, and N. Kraft. Automatically
documenting unit test cases. In ICST’16, pages
341–352, 2016.

[34] D.-Y. Lin and I. Neamtiu. Collateral evolution of
applications and databases. In IWPSE-Evol ’09, pages
31–40, 2009.

[35] M. Linares-Vásquez, L. F. Cortés-Coy, J. Aponte, and
D. Poshyvanyk. Changescribe: A tool for
automatically generating commit messages. In 37th
IEEE/ACM International Conference on Software
Engineering (ICSE’15) - Tool Demo Track, pages
709–712. IEEE, 2015.

[36] M. Linares-Vásquez, B. Li, C. Vendome, and
D. Poshyvanyk. How do developers document

database usages in source code? In ASE’15 - New
Ideas Track, pages 36–41, 2015.

[37] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway.
Mental models and software maintenance. J. Syst.
Softw., 7(4):341–355, Dec. 1987.

[38] A. Maule, W. Emmerich, and D. S. Rosenblum.
Impact analysis of database schema changes. In
Proceedings of the 30th international conference on
Software engineering, pages 451–460. ACM, 2008.

[39] P. W. McBurney and C. McMillan. Automatic
documentation generation via source code
summarization of method context. In ICPC’14, page
to appear, 2014.

[40] Microsoft. Microsoft Application Architecture Guide.
Microsoft Press, 2nd edition, 2009.

[41] L. Moreno, J. Aponte, G. Sridhara, A. Marcus,
L. Pollock, and K. Vijay-Shanker. Automatic
generation of natural language summaries for java
classes. In Program Comprehension (ICPC), 2013
IEEE 21st International Conference on, pages 23–32.
IEEE, 2013.

[42] L. Moreno, G. Bavota, M. D. Penta, R. Oliveto,
A. Marcus, and G. Canfora. Automatic generation of
release notes. In FSE’14, 2014.

[43] L. Moreno, A. Marcus, L. Pollock, and
K. Vijay-Shanker. Jsummarizer: An automatic
generator of natural language summaries for java
classes. In Program Comprehension (ICPC), 2013
IEEE 21st International Conference on, pages
230–232. IEEE, 2013.

[44] H. A. Nguyen, T. T. Nguyen, H. V. Nguyen, and
T. N. Nguyen. idiff: Interaction-based program
differencing tool. In Automated Software Engineering
(ASE), 2011 26th IEEE/ACM International
Conference on, pages 572–575. IEEE, 2011.

[45] S. Panichella, J. Aponte, M. Di Penta, A. Marcus, and
G. Canfora. Mining source code descriptions from
developer communications. In 2012 IEEE 20th
International Conference on Program Comprehension
(ICPC), pages 63–72, June 2012.

[46] S. Panichella, A. Panichella, M. Beller, A. Zaidman,
and H. Gall. The impact of test case summaries on
bug fixing performance: An empirical investigation. In
38th International Conference on Software
Engineering (ICSE 2016), pages 547–558, 2016.

[47] C. Parnin and C. Görg. Improving change descriptions
with change contexts. In Proceedings of the 2008
international working conference on Mining software
repositories, pages 51–60. ACM, 2008.

[48] J.-M. Petit, F. Toumani, J.-F. Boulicaut, and
J. Kouloumdjian. Towards the reverse engineering of
renormalized relational databases. In Data
Engineering, 1996. Proceedings of the Twelfth
International Conference on, pages 218–227. IEEE,
1996.

[49] D. Qiu, B. Li, and Z. Su. An empirical analysis of the
co-evolution of schema and code in database
applications. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering,
pages 125–135. ACM, 2013.

[50] S. Rastkar. Summarizing software concerns. In
Software Engineering, 2010 ACM/IEEE 32nd
International Conference on, volume 2, pages 527–528,
May 2010.

[51] S. Rastkar, G. Murphy, and A. Bradley. Generating
natural language summaries for crosscutting source
code concerns. In 27th IEEE International Conference
on Software Maintenance (ICSM), pages 103–112,
Sept 2011.

[52] S. Rastkar, G. C. Murphy, and G. Murray. Automatic
summarization of bug reports. IEEE Trans. Software
Eng, 40(4):366–380, 2014.

[53] D. Sjøberg. Quantifying schema evolution. Information
and Software Technology, 35(1):35–44, 1993.

[54] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and
K. Vijay-Shanker. Towards automatically generating
summary comments for java methods. In Proceedings
of the IEEE/ACM International Conference on
Automated Software Engineering (ASE’10), pages
43–52, 2010.

[55] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and
K. Vijay-Shanker. Towards automatically generating
summary comments for java methods. In Proceedings
of the IEEE/ACM international conference on
Automated software engineering, pages 43–52. ACM,
2010.

[56] C. Vassallo, S. Panichella, M. Di Penta, and
G. Canfora. Codes: Mining source code descriptions
from developers discussions. In 22Nd International
Conference on Program Comprehension, pages
106–109, New York, NY, USA, 2014. ACM.

[57] A. T. T. Ying and M. P. Robillard. Code fragment
summarization. In ESEC/FSE’13, 2013.

[58] A. T. T. Ying and M. P. Robillard. Selection and
presentation practices for code example
summarization. In 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
pages 460–471, 2014.

