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ABSTRACT

Detecting code clones is an established method for comprehending
and maintaining systems. One important but challenging form of
code clone detection involves detecting semantic clones, which
are those that are semantically similar code segments that differ
syntactically. Existing approaches to semantic clone detection do
not scale well to large code bases and have room for improvement
in their precision and recall. In this paper, we present a scalable
slicing-based approach for detecting code clones, including seman-
tic clones. We determine code segment similarity based on their
corresponding program slices. We take advantage of a lightweight,
publicly available, and scalable program slicing approach to com-
pute the necessary information. Our approach uses dependency
analysis to find and measure cloned elements, and provides insights
into elements of the code that are affected by an entire clone set/-
class. We have implemented our approach as a tool called srcClone.
We evaluate it by comparing it to two semantic clone detectors in
terms of clones, performance, and scalability; and perform recall
and precision analysis using established benchmark scenarios. In
our evaluation, we illustrate our approach is both relatively scalable
and accurate. srcClone can also be used by program analysts to
run on non-compilable and incomplete source code, which serves
comprehension and maintenance tasks very well. We believe our
approach is an important advancement in program comprehen-
sion that can help improve clone detection practices and provide
developers greater insights into their software.
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1 INTRODUCTION

Comprehending and maintaining evolving large software systems
is an ongoing challenge. Clone detection is one approach that can
assist by identifying recurring patterns of use. There are many ap-
proaches for clone detection [6, 30]. The clones detected by each
approach are fundamentally constricted by their respective under-
lying clone definitions, the similarity measures they use, and the
level of analysis they apply to the source code during the detection
process.

Textual-based techniques use three levels of analysis during
the clone detection process: textual, lexical, and syntactical, which
results in Type-1, Type-2, and Type-3 clones [33]. Textual-based
techniques are capable of finding clones only within a program’s
contiguous and structured syntax. They are not able to find se-
mantically equivalent clones that differ significantly in structure
since they are not sensitive to non-contiguous, reordered, and inter-
twined clones [19, 23]. Functional-based techniques use a semantic
analysis level to analyze source code, and their clones are known
as Type-4 clones.

Semantic clone identification is challenging as it can be difficult
to determine precisely semantically similar components, and is,
in general, undecidable [11, 15]. As such, semantic approaches
generally use a less strict definition of semantically similar code
segments. Most approaches explore abstractions of the program
semantics to guide the clone detection process, such as Control Flow
Graphs (CFGs) [1] or Program Dependence Graphs (PDGs) [10].
The clone detection process is thus turned into the problem of
finding isomorphic sub-graphs, which is NP-hard, requiring existing
algorithms use approximative solutions [11, 19, 22].

As a motivating example, consider the code snippet in Figure 1a
compared to the similar code snippet in Figure 1b from Roy et
al. [33]. Both perform the same overall computation, but Figure 1b
replaces a control statement. Both are implemented by different syn-
tactic variants. Current textual-based techniques, and most existing
functional-based techniques, are unable to detect the semantically
similar clone scenario proposed in Figure 1b [32, 33].

To help understand semantic similarities, program slicing [40] is
a widely-used and well-known approach for comprehending and

� �
1 void sumProd(int n) {
2 float sum =0.0; //C1
3 float prod =1.0;
4 for (int i=1;i<=n;i++)
5 {sum=sum + i;
6 prod = prod * i;
7 foo(sum , prod); }}� �

(a) Example Code Snippet

� �
1 void sumProd_E(int n) {
2 float sum =0.0; //C1
3 float prod = 1.0;
4 int i=0;
5 while (i<=n)
6 { sum=sum + i;
7 prod = prod * i;
8 foo(sum , prod);
9 i++; }}� �

(b) Semantically Similar Code

Figure 1: Example Motivation Proposed by Roy et al. [33].
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detecting semantic properties of software [3, 11, 19, 41]. Generally,
program slicing is time consuming since it is based on PDG. Build-
ing the PDG is quite costly in terms of computational time and
space. Thus, PDG-based approaches generally do not scale well.
Generating slices for a very large system can often take days of
computing time [2]. However, one available program slicer by Alo-
mari et al., srcSlice [2, 28], is able to generate slices much faster
as it is not PDG-based.

This paper describes our design and initial implementation of
a slice-based clone detection method and corresponding tool, sr-
cClone, for large scale C/C++ software systems. We employ src-
Slice to compute specifically tailored numerical vectors to represent
the structural information within slices, which we then hash and
cluster. We consider two code segments semantically similar if their
slices are similar and they represent a candidate clone pair.

This work advances the knowledge and practice of program
comprehension through clone detection in different ways. Our
approach (1) is scalable and robust for detecting Type-4 clones,
(2) is more resilient to differences in syntax and able to find non-
contiguous clones, (3) finds clones that are relevant and meaningful
computations through means of slicing variable, and (4) discovers
data and control dependencies that exist within slices to detect not
only cloned code but also the code that is impacted by clones.

We organize the remainder of this paper as follows. Section 2
introduces background information on program slicing and src-
Slice. Section 3 describes our slice-based clone detection process.
Section 4 discusses our evaluation. Section 5 presents and contrasts
related work. Finally, Section 6 summarizes the paper and discusses
our ideas for future work.

2 PROGRAM SLICING AND SRCSLICE

This section provides the necessary background information on
program slicing and srcSlice’s slicing results. We focus specifically
on srcSlice’s properties to assist in our description of how we
employ it to detect clones.

Weiser originally defined a “slice” as an executable program that
preserves the behavior of the original program [40]. Their algorithm
traces data and control dependencies for determining the direct
and indirect relevant variables and statements. Slicing techniques
are distinguished broadly according to the type of slices they can
compute [36, 39]. A common limitation of these techniques is using
PDGs to compute slices, which are quite computationally costly
and space intensive. Thus, slicing generally does not scale well.

The slicing tool we employ for srcClone, srcSlice [28], ad-
dresses this limitation by eliminating the time and effort needed to
build entire PDGs. It combines a text-based approach with a light-
weight static analysis XML infrastructure, srcML [8]. This format
provides direct access to abstract syntactic information to support
static analysis. This information is used by srcSlice to identify
program dependencies as needed when computing the slice.

srcSlice implements a forward, decomposition, inter-procedural,
static slicing technique. The forward slice from a specific program
point includes all program points in the forward control flow af-
fected by the computation at that point. srcSlice uses the initial
variable declaration as the starting point. This approach varies from
traditional definitions in that it does not require a precise reference

to a location or statement number in the source, rather only a vari-
able. Specifically, the slicing criterion specified as a triple of the
file, function, and variable names. This is a forward decomposition
slice [2], which can be viewed as the union of a collection of static
forward slices taken at a set of statements that (re)define a variable.

srcSlice computes a slice profile for each identifier line by line
as they are encountered. The slice profile for an identifier contains
all data gathered about that identifier during the slicing process.
Since srcSlice uses a forward decomposition slicing definition,
these data include all lines of code transitively affected by the value
of the identifier along data and control dependencies. The following
is a list of that data,
• File, function, and type, variable: names of the file/function
the variable is in and its type, respectively.
• Def: list of lines a variable is defined or redefined on. Def is used
to differentiate between variables with the same name but in
differing scopes.
• Use: list of lines a variable is used. This refers to a variable’s value
being used in a computation with no modification to its value.
Can be used to construct def-use chains.
• Dvars: list of variables that are data dependent on slicing variable.
• Ptrs: list of aliases of slicing variable. The elements of this list
are variables to which the slicing variable is a pointer.
• Cfuncs: list of functions called using the slicing variable.

srcSlice produces a system dictionary of all the slice profiles
of all variables. It is three-tiered and consists of three maps: files
to functions, functions to variable names, and variable names to
slice profiles. srcSlice is very memory efficient and fast. On the
Linux kernel version 4.06 with ≈ 13 MLOC, srcSlice computes
around 2M slice profiles within 7 minutes [28]. More formally, each
slice profile, denoted by SP , is constructed based on the following
definition of forward decomposition slice:

Definition 2.1 (Forward Decomposition Slice). A forward de-
composition slice, denoted byds , of a program P is constructed with
respect to a given file f , a given function/methodm in f , and a given
variable v inm. It consists of the union of all static forward slices,
denoted by f s , constructed for the criteria {({v}, s1), ..., ({v}, sk )},
where s1, ..., sk is the set of statements in P that define/redefine v .
It is defined as:

SP(v) = ds(f ,m,v) =
⋃

s ∈{s1 ...sk }

f s(v ,s)(P). (1)

This definition can be generalized to cater to a set of variables and
functions. For a given functionm with a total number of variables
equal to d , the slice profile is given as:

SP(m) = ds(f ,m) =
d⋃
i=1

ds(f ,m,vi ) (2)

Finally, for a given file f with a total number of functions/meth-
ods equal to y, the slice profile is given as:

SP(f ) = ds(f ) =

y⋃
i=1

ds(f ,mi ) (3)

Eqs. (2) and (3) are what we use to make larger code segments
in the context of clone detection. Table 1 shows an example of
using Eq.(1) to compute the SPs for code snippets in Figure 1a and
Figure 1b. Table 2 shows the SPs computed for the same snippets
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Table 1: Slice Profiles for Code Snippets in Figure 1a and Fig-

ure 1b. Profiles are Derived Using Eq.1.

Fig. Vars Def Use Dvars Ptrs Cfuncs

1a

i {4, 4} {4, 5, 6} {prod, sum} { } { }
prod {3, 6} {7} { } { } {foo{2}}
sum {2, 5} {7} { } { } {foo{1}}
n {1} {4} { } { } { }

1b

i {4, 9} {5, 6, 7} {prod, sum} { } { }
prod {3, 7} {8} { } { } {foo{2}}
sum {2, 6} {8} { } { } {foo{1}}
n {1} {5} { } { } { }

Table 2: Slice Profiles for Code Snippets in Figure 1a and Fig-

ure 1b. Profiles are Derived Using Eq.2.

Fig. Vars Def Use Dvars Ptrs Cfuncs
1a all {1-6} {4-7} {prod,sum} { } {foo{1,2}}
1b all {1-4,6,7,9} {5-8} {prod,sum} { } {foo{1,2}}

at the function level using Eq.(2). Note, we do not use Eq.(3) in this
particular example since each file contains just one function.

3 CLONE DETECTION USING SLICING

In this section, we present the main steps of our slice-based clone
detection approach. The main idea is to detect code clones based
on the similarity between their slicing information. To achieve this
goal, we first convert the source code into srcML format, which
allows srcSlice to gather data about every file, function, and vari-
able throughout the system. It stores this information in a three-tier
dictionary and represents that dictionary as a set of slice profiles for
all variables in the system. We then encode slice profiles into slicing
vectors by means of its embedded slicing information. We search
and identify clones at the function and file levels based on these
vectors, and compute them at the variable level. We follow this with
an efficient hashing and near-neighbor algorithm to cluster these
vectors with respect to distances between them. By categorizing
vectors with hash values, only those vectors with the same hash
value need be compared. In this way, we minimized the number of
comparisons by a factor of the hash values generated.

3.1 Formal Definitions

Many works define code clones in various ways [29]. Baxter et
al. [5] notes “clones are segments of code that are similar according to
some definition of similarity”. To identify a segment as a clone, we
should allow modifications to some degree. However, if the degree
of modifications allowed is too large, then at some point everything
will be a clone. Thus, the similarity measure used determines the
types of clones we detect.

Another issue we consider is the size of the code segment, or
more precisely, the minimum size of the code segment that we
should consider to be worthwhile to examine. This minimal size is
considered differently in different contexts. For example, Nicad [31]
uses a structured block that is at least 6 LOC, Deckard [15] uses
a structured sub-tree, and others uses the whole function, PDG
subgraphs, or begin-end blocks of a certain minimum size [6, 29, 33].
This is important, since very small or very large code segments
may end up with a high rate of false positives.

To explicate and help clarify, this paper uses the following defi-
nitions of code segments and clone types.

Definition 3.1 (Code Segment). A code segment, CS , is a set of
lines of code, not necessarily contiguous, as computed by SP(v),
SP(m), or SP(f ) using Eqs. (1), (2), or (3), respectively.

Definition 3.2 (Clone Types). We follow the standard definition
used in the literature [33]:
(1) Type-1: CSs that are exactly identical, except for minor differ-

ences in whitespace, layout and comments.
(2) Type-2: CSs that have similar syntactic structures, except for

differences in identifiers, literals, types, whitespace, layout and
comments.

(3) Type-3: CSs with further modifications, including added, mod-
ified and/or removed statements, in addition to differences in
identifiers, literals, types, whitespace, layout and comments.

(4) Type-4: CSs that perform the same computation but have dif-
ferent syntactic structures/implementations.

The first three types are commonly detected based on the simi-
larity of their program text. Type-1 is often referred to as an exact
clone, whereas both Type-2 and Type-3 are known as near-miss
clones. Type-4 does not require the CSs to have any similar code,
but only the same computation, which can be detected using their
functional similarity. This type of semantic clone is generally out
of scope of much of the clone detection research, with existing
approaches struggling to detect this type effectively [11, 19, 22]. In
this paper, we view clones as semantically similar code segments.
We detect these semantic aspects using program slicing. Thus, it is
important to define our notion of similar slices.

Definition 3.3 (Slice Profiles Similarity). Two slice profiles, SP1
and SP2, are similar if their corresponding slicing vectors, sv1 and
sv2, are σ -similar, for a specified threshold σ .

Definition 3.4 (Slicing Vectors Similarity). Two slicing vectors,
sv1 and sv2, are σ -similar for a given threshold σ , ifS(sv1, sv2) ≤ σ .

S refers to a similarity function. Deckard [15] uses tree edit
distance as a similarity function, CloneDr [5] uses a size-sensitive
definition on trees called Similarity, and Gabel [11] uses a mapping
function that maps a sequence of syntax to a PDG subgraph. Since
our approach is not a PDG- nor Tree-based, we use a Hamming
distance metric on d-dimensional slicing vectors. We identify two
CSs as a clone pair if their corresponding SPs are similar. A group
of similar CSs form a clone class.

3.2 Slice Profile Vectorization

We introduce slicing vectors to capture the structural information of
slice profiles. This is an important and a key step in our approach.
The slicing vector of a slice profile is a point of uniform dimensions
in the space. This is similar to the characteristic vector introduced
by Deckard’s [15] approach. A characteristic vector is a numerical
approximation of a particular sub-tree. The dimensions of a char-
acteristic vector are determined by the total number of possible
types of complete binary trees needed to approximate a given tree.
Deckard generates vectors with a post-order traversal of the parse
tree. We extend this work in multiple ways. Firstly, each slicing vec-
tor has a fixed size that is based on the number of slicing fields we



ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Alomari and Stephan

Table 3: Slicing Vectors for Variable and Function Levels for

the Slice Profiles (SPs) Computed in Table 1 and Table 2.

Function Variable Slicing Vectors (svs)
Variable-level Function-level

sumProd

i ⟨2, 3, 2, 0, 0⟩

⟨6, 4, 2, 0, 1, 4⟩prod ⟨2, 1, 0, 0, 1⟩
sum ⟨2, 1, 0, 0, 1⟩
n ⟨1, 1, 0, 0, 0⟩

sumProd_E

i ⟨2, 3, 2, 0, 0⟩

⟨7, 4, 2, 0, 1, 4⟩prod ⟨2, 1, 0, 0, 1⟩
sum ⟨2, 1, 0, 0, 1⟩
n ⟨1, 1, 0, 0, 0⟩

calculate using srcClone. Secondly, there is no tree to traverse in
order to generate these vectors and there is no need to approximate
the values of the vector’s dimensions. The slicing vector, denoted
by sv , for a given variable’s slice profile, has following dimensions:

sv(v) = ⟨|De f |, |Use |, |Dvars |, |Ptrs |, |C f uncs |⟩ (4)

Each dimension represents the size of one of the slicing fields.
For example, the |De f | dimension represents the number of lines of
code an identifier is defined or redefined on. If two code segments
are cloned, their vectors will be very similar. Intuitively, even if a
clone modified a small part of the original copy, their slicing vectors
will not change greatly from a slicing perspective. This is the only
necessary information that remains about the variable after this
encoding step. Thus, neither the structure of the code nor other
information, such as the names of the variables, will remain. We are
still able to detect Type-2 clones effectively despite this however,
because if two variables have the same sv , but their names are
different, we still detect these clones via the slice profile.

As an example, Table 3 shows the slicing vectors of the slice pro-
files we computed in Table 1 and Table 2. At the variable level, the sv
for each variable in function sumProd is equal to its corresponding
sv for the same variable in function sumProd_E.

We have thus far reduced slice profiles to a set of vectors. We
compose a method of comparing n slicing vectors, where n is the
number of variables. In the process of comparing two methods,
instead of comparing n slicing vectors we can use Eq.(2) to create a
unique slice profile for each method, then encode the slice profile
in the same way we did for a variable. We lastly then add one
more dimension at the end to count the number of variables in that
method. The sv for SP(m), has six dimensions:

sv(m) = ⟨|De f |, ..., |C f uncs |, |SP(v)|⟩ (5)

We repeat the same process for each file using Eq.(3) by adding
a new dimension to represent the number of methods in a file. The
slicing vector for a given SP(f ) has seven dimensions:

sv(f ) = ⟨|De f |, ..., |C f uncs |, |SP(v)|, |SP(m)|⟩ (6)

For example, as shown in Table 3, the slicing vectors for func-
tions sumProd and sumProd_E are ⟨6, 4, 2, 0, 1, 4⟩ and ⟨7, 4, 2, 0, 1, 4⟩,
respectively. There is no difference in the number of variables in
each function. However, there are different numbers of definition
statements: 7 in sumProd_E instead of 6 in sumProd. This is due to
us using Eq.(2) to compute the slice profiles. The union between

the De f sets in both functions eliminate repeated lines of code, in
this case statement number 4 in the SP(i), as shown in Table 1.

Given a system dictionary, we perform a single pass to generate
vectors for its slice profiles. Algorithm 1 shows how we generate
vectors for the three granularity levels of slice profiles. srcClone
returns the G set with all svs in the system.

Algorithm 1: Slicing Vectors Generation
Input: SD : system dictionary
Output: G: slicing vectors set
/* sv(v), sv(m), sv(f ) generation */

1 begin

2 F ←− Set of files in SD
3 M ←− Set of methods for each file
4 V ←− Set of variables for each method
5 for ∀sp(f ) ∈ F do

6 for ∀sp(m) ∈ M do

7 for ∀sp(v) ∈ V do

8 sv(v) ← ⟨|De f |, ..., |C f uncs |⟩

9 sv(m) ← ⟨|De f |, ..., |C f uncs |, |V|⟩

10 sv(f ) ← ⟨|De f |, ..., |C f uncs |, |V|, |M|⟩

11 G ← G
⋃
(sv(f ), sv(m), sv(v))

3.3 Similarity and Matching

To find clones using slicing vectors, we compare every vector to
every other vector for equality. Several issues arise however, such
as near-miss clone detection, dimension similarity, and scalability.

We handle near-miss clones by comparing vectors looking for
similarity rather than exact equality. Specifically, rather than match-
ing entire slicing vectors, we compare instead dimensions for sim-
ilarity. Pairwise comparisons are computationally infeasible for
similarity detection, especially, in large software systems. Thus, we
focus on pairs that are likely to be similar only rather than inves-
tigating every pair. There is a general theory of how to provide
such focus, called Locality Sensitive Hashing (LSH) [14], which we
employ in our approach and corresponding tool. LSH is a method
for determining which items in a given set are similar. Rather than
comparing all pairs of items within a set, items are hashed into
buckets such that similar items will be more likely to hash into the
same buckets. As a result, the number of comparisons are reduced.
LSH has been used successfully by some AST-based clone detection
approaches [11, 15] to cluster a large number of sub-trees vectors,
and we employ it analogously for srcClone.

In our case, we specifically adapt LSH to hash the slicing vectors,
find the near neighbor sets, and generate the clone reports. Slic-
ing vectors similar to each other are located in the same buckets
with high probability, while dissimilar vectors are likely to be in
different buckets. This makes it easier to identify clones with vari-
ous degrees of similarity. Our method is capable of enumerating
clones from millions of vectors in a few minutes, with extremely
low false positive rate, as we present in Section 4. We define our
LSH implementation as follows,

Definition 3.5 ((r1, r2,p1,p2)-Locality Sensitive Hashing). Let
D be a distance measure, and let r1 < r2 be two distances in this



srcClone: Detecting Code Clones via Decompositional Slicing ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

measure. Given a set of slicing vectors G, and a collision probability
values p1 > p2, then a family of hash functions H is said to be
(r1, r2,p1,p2)-sensitive, if for every vi ,vj ∈ G the following two
conditions hold;{

if D(vi ,vj ) ≤ r1, then Probh∈H [h(vi ) = h(vj )] ≥ p1,
if D(vi ,vj ) ≥ r2, then Probh∈H [h(vi ) = h(vj )] ≤ p2.

In our implementation, a smaller distance between vectors cor-
responds to a higher probability of similarity. Recall that a distance
should satisfy three properties: non-negativity, symmetry, and tri-
angle inequality, for example, Euclidean distance and Hamming
distance. Note that not every distance measure may have a corre-
sponding LSH family. We use the Hamming distance as a metric
over the d-dimensional vectors. We define Hamming distance in
our context as follows,

Definition 3.6 (Hamming Distance). Given a set of vectors G,
let v1 = ⟨x1, ..., xd ⟩ and v2 = ⟨y1, ...,yd ⟩ be two d-dimensional
vectors ∈ G. The Hamming distance of v1 and v2, DH(v1,v2) =∑d
i=1 δ (xi ,yi ), where δ (xi ,yi ) = 0, if xi = yi , and 1, if xi , yi .

The Hamming distance is the number of dimensions in which
v1 and v2 are different. Now, suppose two vectors v1 and v2 are
identical. The hamming distance is equal to zero, which means that
the probability of h(v1) = h(v2) is high and is equal to the number
of dimension agreements out of the total number of dimensions.
In this case, one . Since vectors v1 and v2 disagree in DH(v1,v2)
positions out of d positions, then they agree in d − DH(v1,v2)
positions. Hence Prob [h(v1) = h(v2)] = 1 − DH(v1,v2)/d .

Lemma 3.1. For any r1 < r2,H is a (r1, r2, 1 − r1
d , 1 −

r2
d )-sensitive

family of hash functions.

Proof. Recall Definition 3.5. Let p1 = 1−r1/d , and p2 = 1−r2/d .
A family H of hash functions h : G → U is called (r1, r2,p1,p2)-
sensitive, if for every vi ,vj ∈ G the following two conditions hold;{

ifDH(vi ,vj ) ≤ r1, thenProbh∈H [h(vi ) = h(vj )] ≥ p1,
ifDH(vi ,vj ) ≥ r2, thenProbh∈H [h(vi ) = h(vj )] ≤ p2.

□

We use this LSH to hash vectors with respect to the hamming
distances among them, so that vectors near each other, at distance
≤ r1, are located in the same buckets with high probability of
collision, while vectors far from each other (at distance ≥ r2) are
likely to be in different buckets. We consider any pair that have
the same hash value to be a candidate clone pair. Since we are
comparing similarity rather than equality, we use various degrees
of similarity thresholds to specify how similar two slicing vectors
should be. We have thus encoded slices using numerical vectors
and reduced the similarity problem to detecting similar vectors. We
now explain how we hash vectors and cluster similar vectors.

3.4 Hashing and Clustering

Our modified LSH algorithm helps find near neighbors of a given
query vector v efficiently. In our near neighbor search problem, we
are given a set G of n slicing vectors, and the goal is to build a data
structure that reports any vector within a given distance r to v .
However, since some existing solutions to this problem suffer from
the curse of dimensionality, researchers proposed approximation
algorithms for the problem, such as the (c, r )-Approximate Near
Neighbor algorithm (ANN) [14], in which a data structure may

return any vector whose distance from the query vector is at most
cr , for an approximation factor c > 1, provided that there exists a
vector within distance r from the query vector v . More formally,

Definition 3.7 ((c, r )-Approximate Near Neighbor). Given a
query vectorv , a set of vectors G of size n, a distance r , and a factor
c > 1,U = {u ∈ G | DH(u,v) ≤ cr } is called an cr -ANN set of v ,
and any u ∈ U is a (c, r )-approximate near neighbor of v .

Algorithm 2: LSH Hashing and Detection
Input: G: vectors, r : distance, p1 : probability
Output: cr -ANN: near neighbor set

1 cr -ANN←− ϕ
2 LSH (G, r ,p1)

3 for each v ∈ G do

4 N ← queryLSH (v)

5 if N .size() > 1 then
6 cr -ANN← cr -ANN

⋃
N

7 else

8 delete N

9 return cr -ANN

Definition 3.7 implies that we post-process G to create a data
structure, cr -ANN, that contains clustered similar vectors. We show
our hashing process and our algorithm for finding the cr -ANN set
for each vector in Algorithm 2. The distance r is the largest distance
allowed between a vector and its neighbors, that is, the threshold
σ defined in Definition 3.4. We store all vectors into LSH hash
tables (line 2). We feed r and p1 (the minimal probability) to LSH,
and then compute other parameters automatically and in optimal
running time. We then use a vector v as a query point to get a cr -
ANN set (line 4). Finally, we return the cr -ANN sets for all vectors
to generate clone reports (line 9). If the cr -ANN set just contains
the query vector v , which means there are no neighbors within
distance r , then we delete it (line 8). These deleted sets represent
newly added variables or methods in a cloned segment that do not
have a match in the original code segment.

3.5 Approach Properties

As per other near-miss clone detectors, our slice-based approach
is not affected by the formatting and layout differences between
code segments. The slice profile includes all directly or indirectly
related statements only. Unlike most techniques, our approach
allows different sizes ofCSs to be compared at different granularity
levels. A CSs to be compared in our approach may contain one SP ,
or several SPs . In our method, there is no token, string, tree, or
graph to compare.

As we show in Table 3, the similarity of all slicing vectors at the
variable level for both functions are identical. This means all vectors
have the same hash values and represent a clone class. But can we
consider both functions identical? If we compare vectors at the
function level, both also have the same hash value withDH ≈ 0.84.
If we consider a similarity threshold r to be equal 1 (both vectors
differ in one position), then p1 will equal 0.8, and both functions
form a clone pair. We can alternatively say that both functions are
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similar since all vectors at the variable levels are similar. However,
this is not the case when we have new variables added to the cloned
function. Therefore, we delete those variables using Algorithm 2.
In fact, using the Type-4 definition of clones where only semantic
similarity is considered, these functions are indeed clones and form
a clone pair.

3.5.1 Normalization and Transformation. In our slice-based
method, there is no need for normalizing transformations as the
case in many clone detection tools [33]. Although, almost all clone
detection approaches remove and ignore whitespace and comments
in the actual comparison, some approaches apply identifier nor-
malization and/or reorganizing the source code to a standard form
before the comparison process.

To better understand why we do not require normalization, let
us consider the example of a function call, say foo(sum, prod)
in Figure 1a. With typical text-based and line-based approaches,
this simple call would either be normalized as id() or as id(id,
id). In the first normalization, all function calls in the code are
treated as the same and thus a typical approach may generate
false positives. In the second normalization, all function calls with
two parameters will match, again generating many false positives
and at the same time missing some potential matches, such as
overloaded functions in C++ when only the number of parameters
is changed, for example, foo(sum). Nicad’s group [31], discussed
this example. They consider that at least the function name or the
number of parameters should be the same to have a match with
other function calls. As a result, it considers both function calls
neither similar, by normalizing both to id(), nor dissimilar, by
normalizing the first call to id(id, id) and the second call to
id(id).

In contrast, using slice-based detection, the first function call,
foo(sum, prod), generates two slice profiles, one for sum and
one for prod. The Cfuncs field in the slice profile of sum contains
foo{1}, and the slice profile of prod contains foo{2}. In the
second function call, foo(sum), we have just one slice profile for
the sum variable and its Cfuncs field contains foo{1}. Therefore,
both function calls are similar from the variable sum perspective.

3.5.2 Type-1 and Type-2 Detection. To understand the effec-
tiveness of our slice-based detection method, consider the following
three simple code segments:

1 for (int i=0; i<10; i++)
2 for (int i=1; i<10; i++)
3 for (int j=2; j<20; j++)

For typical text-string-based techniques, such as Duploc [9],
all the three segments are considered different. For text-line-based
techniques, such as Nicad [31], just segments 1 and 2 are considered
similar, since, the identifier name is changed in segment 3. Classical
token-based techniques, such as CCFinder [18] and AST-based
techniques, such as CloneDR [5], consider the three segments
similar, since, the parse trees for these segments are identical and
the code differs only in identifier names and literal values.

In our work, the three segments have the same slicing profiles
and therefore same slicing vectors, ⟨2, 1, 0, 0, 0⟩. The variable, either
i or j, is defined twice inside the f or loop, one for initialization
and one for update, and is used once in the condition. There are

Table 4: File-level Slice Profiles (SPs) for Figure 2a and Fig-

ure 2b, foo_t = foo_timed.

F Def Use Dvars Ptrs Cfuncs
1 {1,5,10,11,

17}
{1,2,3,5,6,7,12,13,15,
16,17}

{abc} {i, abc} {fun{1},
foo{1, 2}}

2 {1,5,10,11,
12,13,17,21}

{1,2,3,5,6,7,14,15,18,
19,20,21}

{abc} {i, abc} {fun{1},
foo_t{1, 2}}

no dependent variables, pointers, or called functions in the slicing
profiles. Therefore, the three segments will be still similar and will
be returned as clones.

3.5.3 Type-3 and Type-4 Detection. Consider the similar code
snippets in Figure 2a and Figure 2b. Both perform the same overall
computation, but Figure 2b contains extra statements (highlighted)
and extra variables (start and finish) to time the loop. Both are
implemented by different syntactic variants. Textual-based clone
detection techniques are unable to detect these non-contiguous and
interleaved clones [11].

Using our slice-based detection, Table 4 shows the slice profiles
we generated for the code snippets in Figure 2a and Figure 2b at the
file level using Eq. 3. We omit the slice profiles at both the variable
and the function levels for brevity sake. The only difference is in
the Def and Use fields. This is reasonable since the only change
between the two codes is defining two variables, then using them.

These changes are more obvious to see in the generated slicing
vectors. Table 5 shows the slicing vectors we generated for the
variable, function, and file levels using Eqs. 4, 5, and 6, respectively.
At the variable level, all vectors are identical except for the new
variables, start and finish. There are no corresponding variables in
the original file (Figure 2a). Since those two variables are newly
added variables inside the function main, the vectors at the main
function are the only affected vectors with this addition. Also the
number of variables is impacted at the end of the function’s vector,
now having a value of 4 instead of 2. This change at the function
level also impacts the vectors at the file level, and again the Def
and Use fields in addition to the number of variables. However,
the number of functions inside the file-level vectors remains the
same. Therefore, we now comprehend functions foo and foo_timed
are identical, as are the function fun in both versions. However,
the similarity between the main function in both files is likely too
different to be identified as a semantic clone using Eq. 5. Therefore,
we are able to detect that those two files as similar by comparing
the slicing vectors at the variable level. This is because the slicing
vectors for start and finish are deleted early using Algorithm 2.

3.6 Implementation

Our implementation of srcClone consists of a number of primary
components: srcML, srcSlice, slicing vectors, and LSH clustering.
We present srcClone’s pipeline in Figure 3. It begins with the
source code in the form of git repository. Then, we run srcML to
produce an XML representation of the source code and abstract
syntactic information from the AST. We execute srcSlice using
the XML as input and generate the list of slicing profiles for each
variable in the system. We parse this data to generate the slicing
vectors we need for the clone detection process. We then cluster
all similar vectors using the LSH and its near neighbor algorithm.
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� �
1 int fun(int z){
2 z++;
3 return z;
4 }
5 void foo(int &x, int *y){
6 fun(x);
7 (*y)++;
8 }
9 int main (){
10 int abc = 0;
11 int i = 1;
12 while (i <=10){
13 foo(abc , &i);
14 }
15 std::cout <<"i:"<<i<<"abc:"<<abc;
16 std::cout <<fun(i);
17 abc = abc + i;
18 return 0; }� �

(a) Program A

� �
1 int fun(int z){
2 z++;
3 return z;
4 }
5 void foo_timed(int &w, int *y){
6 fun(w);
7 (*y)++;
8 }
9 int main (){
10 int abc = 0;
11 int i = 1;
12 long start = get_time_millis ();
13 long finish;
14 while (i <=10){
15 foo_timed(abc , &i);
16 }
17 finish = get_time_millis ();
18 std::cout <<"loop took"<<finish -start;
19 std::cout <<"i:"<<i<<"abc:"<<abc;
20 std::cout <<fun(i);
21 abc = abc + i;
22 return 0; }� �

(b) Program B

Figure 2: Motivation Example as Proposed by Gabel et al. [11].

Table 5: Slicing Vectors (svs) for Figure 2a and Figure 2b,

foo_t = foo_timed.

F Func Var Slicing Vectors
Var-level Func-level File-level

1

foo y <1,1,0,1,0> <1,5,0,2,1,2>

<5,11,1,2,3,5,3>
x <1,4,0,1,1>

fun z <1,2,0,0,0> <1,2,0,0,0,1>

main i <1,10,1,0,2> <3,11,1,0,3,2>abc <2,7,0,0,2>

2

foo_t

y <1,1,0,1,0> <1,5,0,2,1,2>

<8,12,1,2,3,7,3>

w <1,4,0,1,1>
fun z <1,2,0,0,0> <1,2,0,0,0,1>

main

i <1,10,1,0,2>

<6,12,1,0,3,4>abc <2,7,0,0,2>
start <1,1,0,0,0>
finish <2,1,0,0,0>

Source srcML srcSlice Vectors LSHXML SPs svs

Figure 3: The srcClone Pipeline.

One of srcClone’s strengths is that it can detect clones for non-
compilable and incomplete source code. However, since srcClone
uses srcML, if a repository contains files of an unsupported pro-
gramming language, we ignore those files. Because the current
version of srcSlice supports C/C++ only, so does srcClone.

4 EVALUATION

Evaluating clone detection tools is still problematic for researchers [6,
37]. We perform a preliminary evaluation of our approach and in-
tend to conduct a more rigorous evaluation as future work. To
evaluate and validate our approach and our srcClone tool initially
we conducted a comparative study with two PDG-based approaches
that use program slicing to detect clones as they are the most sim-
ilar to our approach: (1) Komondoor and Horwitz [19], and (2)
Gabel’s [11]. Both tools used Grammatech’s CodeSurfer 1 tool to
1http://www.grammatech.com

build the PDGs and run slicing over C/C++ source code. There are
some other approaches that are PDG-based, such as the Duplix [22]
and GPLAG tools [25]. However, they are not using program slicing.

Additionally, we use established benchmark scenarios to per-
form qualitative analysis proposed by Roy et al. [33]. In their paper,
they compared and evaluated almost all well-known existing clone
detection techniques that include classical and state-of-the-art tech-
niques. They designed 16 different hypothetical editing scenarios
that represent the typical changes to copy/pasted code. These sce-
narios are categorized under the 4 major types of clones, as shown
in Section 4.3.

The objectives of our evaluation is twofold, wewant to determine
if the clones produced from srcClone are comparable to those
produced by others in terms of the correctness and the size of the
clones. The second objective is to demonstrate that our approach is
highly scalable and efficient. These objectives lead to the following
two primary research questions:

• RQ1: Does srcClone identify accurate clones?
• RQ2: Is srcClone scalable and efficient?

We performed our evaluations on a macOS with 4 GHz Intel Core
i7 and 8 GB DDR3. We used srcML v 0.9.5 and srcSlice Beta-1.0. In
our work, the number of dimensions for SP(v) is fixed and is equal
to five. Therefore, p1 = 1 − r1

5 . We set srcClone’s threshold σ and
r value to 1. This will give a p1 values equal to 0.80, 0.83, and 0.86 at
the variable, function, and file levels, respectively. To compare with
Gabel’s and Komondoor’s we compare the cr -ANN set of srcClone
with the subgraphs sets they returned as candidates clones.

4.1 Comparative Results - Komondoor’s

We start comparing srcClone with Komondoor’s using the largest
system they used to run their experiments, the GNU bison Unix
utility system. While they do not state exactly what version they
used, based on the date of their publication we decided to use
version 1.29. Table 6 lists the approximate system sizes measured by
LOC, number of files, PDGs for Komondoor’s, and SPs for srcClone.

http://www.grammatech.com
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Table 6: System Sizes. Whitespace and Comments are

Counted. LOC = Lines of Code, PDG = Program Dependence

Graph, and SP = Slice Profile.

System LOC Files PDGs SPs
bison 1.29 24,8 K 89 28,548 1939
Linux 2.6.16 6,6 M 15,762 – 656,081

Table 7: CG: Clone Groups. For Komondoor andGabel this is

the Number of PDG Nodes. For srcClone this is the Number

of Slicing Vectors (svs).

Komondoor srcClone

System Exec. T CG Exec. T CG

bison 1.29 1h 34m 5s 800 1m 41s 1125
Gabel srcClone

Linux 2.6.16 9h 48m 3s 255,108 3m 8s 316,221

Table 7 shows the results of both tools. In 1 hour and 34 minutes,
Komondoor’s tool found 800 clone groups out of 28.5K PDGs. These
groups range in size from 5 to 227 PDGs. In less than two minutes,
srcClone found 1125 clone groups at the three granularity levels.

We manually verify precision of the returned clones by our tool
and compared it to those returned by Komondoor’s. We show some
examples of interesting clones that are non-contiguous, reordered,
or intertwined in Figure 4. This code snippet is cloned five times
inside the bison system. Komondoor was able to detect only two
copies of it. Specifically, the highlighted code in Figure 4a and Fig-
ure 4c. Our tool was able to detect all the five copies. We show
the slicing vectors of the functions that include these snippets in
Figure 4f. The svs at the variable level are identical for common
variables between the code snippets. For example, the svs for vari-
able fp3 as shown in the last column all are similar. Komondoor was
not able to detect the line number 1 in Figures 4a and 4c. This is due
to the heuristic they used during the slicing process. When slicing
backward from the nodes that are inside the loops (while and for),
they add to the slice the nodes that are outside the loops only if
the loop predicates match. Since both predicates do not match, the
initial assignments to pointer f p3 are not included in the clones.

4.2 Comparative Results - Gabel’s

We choose the largest system they used in their evaluation, which
is the Linux kernel. They did not mention the version number they
used, however, since they compared their work with Deckard’s,
and Deckard used Linux kernel version 2.6.16, so do we. We show
the system sizes in Table 6. Table 7 illustrates a summary of our
results. In 9 hours and 48 minutes, Gabel’s tool found 255,108 clone
groups. These groups range in size from 4 to 32 PDGs. The total
number of detected clone lines ranges from 30,367 to 940,497. src-
Clone, within 3 minutes, was able to find 316,221 similar slicing
vectors. Specifically, 254,103 on the variable level, 37,117 at the func-
tion level, and 25,001 at the file level. Its total number of detected
clone lines ranges from 275,576 to 2,794,133.

4.3 Qualitative Analysis - Roy’s Scenarios

For this component of our evaluation we employ the scenarios from
Roy et al. [33]. These present an established predictive benchmark
for the recall and precision of clone detection techniques. Some

scenarios are difficult and represent obstacles for the clone detec-
tion techniques. We evaluated srcClone against all four proposed
scenarios, which includes 16 sub-scenarios. We present our slicing
vectors for the original code segment in Figure 5 and the results
for Scenarios 1, 2, 3, and 4 as shown in Figures 6, 7, 8, and 9,
respectively.

We compared srcClone with all clone detection techniques
used by Roy et al. In total, we compared 42 techniques based on
their ability and feasibility of detecting the four proposed scenarios.
We show an abridged version of our results in Table 8 comparing
our approach to the top coverage approaches in each category
of clone detector in addition to the two we compared to earlier.
Scenario 4 is the most difficult to detect, with most of the techniques
failing. For our approach, we were successful at detecting, and
all 16 (sub)scenarios using the function granularity. As shown in
Table 8, the coverage column represents the recall and the pies are
representing the precision or false positive for each technique.

5 RELATEDWORK

Many clone detection techniques exist in the literature. These
techniques can be categorized into text-based [16, 17, 27], token-
based [4, 18, 24], tree-based [5, 21], metrics-based [20, 26, 34], and
graph-based [11, 19, 22, 25]. We talk about the most related works
herein.

PDG-based clone detection algorithms detect clones as isomor-
phic sub-graphs in a given PDG. Since this problem is NP hard,
related algorithms use approximative PDG solutions and are quite
expensive. To find isomorphic sub-graphs, some approaches used
backward program slicing [40]. However, using a backward slicing
results in a tradeoff between precision (false positive) and recall
(undiscovered clones). There are similar sub-graphs that cannot
be detected by only using backward slicing [11, 19]. Komondoor
and Horwitz [19] use backward program slicing to find isomorphic
PDG’s sub-graphs. They find clones by starting with two matching
nodes in the PDG and slicing backwards from those nodes at the
same time, then comparing the resulted sub-graphs. Hamid and Za-
ytsev [13] conducted a replication of this work to find refactorable
semantic clones based on PDG and backward program slicing. Sim-
ilarly, Gabel et al. [11] uses forward program slicing [7] to find
semantic PDG sub-graphs, maps these sub-graphs to related struc-
tured syntax trees, and finds clones using the Deckard clone de-
tection approach [15]. They used intra-procedural forward slicing
to increase the recall by finding different flows of data throughout
a given function.

In our past work, we envisioned employing slicing to detect
clones but in a different way [3]. We proposed using forward slices
and an MD5 hashing algorithm to detect code clones between differ-
ent versions of software systems. Our proposal was to encode slices
to strings and then feed those strings to an MD5 hash algorithm
that produces a 128-bit hash value. The work in this paper builds on
that idea, however, it is different as we now use embedded slicing
information and the slicing fields to generate slicing vectors that
represent each slice uniquely.

Deckard implements a tree similarity approach that uses the
idea of characteristic vectors. Each vector is a numerical approxima-
tion of a particular subtree. In contrast, we introduce slicing vectors
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1 fp3 = lookaheadset + tokensetsize;
2
3 for (i=lookaheads[state]; i < k; i++)
4 {
5 fp1 = LA + i * tokensetsize;
6 fp2 = lookaheadset;
7 while (fp2 < fp3)
8 *fp2++ |= *fp1++;
9 }� �

(a) conflicts.c/count_sr_conflicts

� �
1 fp3 = rowp + tokensetsize;
2 for (sp=lookback[i]; sp; sp = sp->next)
3 {
4 fp1 = rowp;
5 fp2 = F + tokensetsize * sp->value;
6 while (fp1 < fp3)
7 *fp1++ |= *fp2++;
8 }
9 rowp = fp3;� �

(b) lalr.c/compute_lookaheads

� �
1 fp3 = base + tokensetsize;
2 ...
3 if (rp) {
4 while ((j = *rp++) >= 0) {
5 ...
6 fp1 = base;
7 fp2 = F + j * tokensetsize;
8 while (fp1 < fp3)
9 *fp1++ |= *fp2++; }}� �

(c) lalr.c/traverse� �
1 ...
2 fp2 = fp1;
3 fp3 = lookaheadset;
4
5 while (fp3 < fp4)
6 *fp3++ |= *fp2++;� �

(d) conflicts.c/set_conflicts

� �
1 ...
2 fp2 = shiftset;
3 fp3 = lookaheadset;
4
5 while (fp3 < fp4)
6 *fp2++ |= *fp3++;� �

(e) conflicts.c/print_reductions

Func sv(m) LoC sv(f p3)
(a) count_sr_conflicts ⟨21, 27, 1, 4, 1, 8⟩ 67 ⟨2, 2, 0, 1, 0⟩
(b) compute_lookaheads ⟨18, 16, 1, 4, 1, 8⟩ 40 ⟨2, 2, 0, 1, 0⟩
(c) traverse ⟨18, 21, 1, 4, 1, 8⟩ 54 ⟨2, 2, 0, 1, 0⟩
(d) set_conflicts ⟨21, 23, 1, 2, 2, 9⟩ 87 ⟨2, 2, 0, 1, 0⟩
(e) print_reductions ⟨63, 75, 8, 4, 4, 20⟩ 227 ⟨2, 2, 0, 1, 0⟩

(f) Slicing Vectors for 5 Functions and 1 Common Variable

Figure 4: GNU bison-1.29/src/ Unix Utility System.

Table 8: Abridged Table for Clone Detection Scenario-Based Evaluation [33] Appended with srcClone.

very well well medium low probably can probably cannot ◦ cannot

Citation Scenario 1 Scenario 2 Scenario 3 Scenario 4 Coverage
a b c a b c d a b c d e a b c d %

Text-Based Nasehi [27] 81
Token-Based CP-Miner [24] ◦ 75
Tree-Based CloneDr [5] ◦ ◦ ◦ 75
Metrics-Based Kontogiannis [20] 100
Graph-Based GPLAG [25] * 100

Komondoor [19] ◦ 75
Gabel [11] ◦ 94

Slice-Based srcClone 100
* A technique/tool with special limitations or other main purpose than clone detection, such as whole file comparison, visualization
only, plagiarism detection, IDE support or other special issues.

to capture structural information of slices. Each vector has a fixed
size that is based on the number of slicing fields we calculate using
srcClone. It is fully acceptable to use more or fewer fields here as
long as the generated vector is unique and detects all the structural
information of a given slice.

Gallagher and Lucas [12] tried to use a backward decomposi-
tional slicing using PDGs to answer the question “Are decomposition
slices clones?”. However, they did not reach any conclusions.

Krinke [22] developed another PDG-based clone detection ap-
proach that does not suffer from the tradeoff between recall and
precision. They used fine-grained PDGs to detect code fragments
as a clone candidates. As it is a PDG approach, it is quite expensive.
For example, The bison system from our evaluation takes Krinke ap-
proximately 1 hour to find similar PDGs. We chose not to compare
against Krinke in this evaluation because they do not use program
slicing.

Xue et al. [41] presents Clone-Slicer to detect domain-specific
clones on binaries rather than the source code level. They used
forward slicing to remove pointer-irrelevant instructions. This dif-
fers from our work in that it uses binary executables instead of the
source code, and they find pointer-related clones only.

The GPLAG [25] tool is a graph-based, however, it is designed
for a different purpose than clone detection and has some corre-
sponding limitations [33].

6 FUTUREWORK AND CONCLUSIONS

We have presented our approach and initial results for detecting
code clones using program slices. We believe this is a new per-
spective on semantic clone detection, allowing for large system
cloning analysis and comprehension using semantic clones. We
employ a scalable lightweight slicing tool to compute the necessary
slicing data. While this tool is inter-procedural and highly scalable,
its tradeoff is that it may not match the accuracy of generating a� �

1 void sumProd(int n) {
2 float sum =0.0; //C1
3 float prod =1.0;
4 for (int i=1;i<=n;i++)
5 {sum=sum + i;
6 prod = prod * i;
7 foo(sum , prod); }}� �

(a) Original Copy

Var sv
i ⟨2, 3, 2, 0, 0⟩
prod ⟨2, 1, 0, 0, 1⟩
sum ⟨2, 1, 0, 0, 1⟩
n ⟨1, 1, 0, 0, 0⟩
sumProd ⟨6, 4, 2, 0, 1, 4⟩

(b) Slicing Vectors

Figure 5: Original Copy by Roy et al. [33] and its Vectors (sv).
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1 void sumProd(int n) {
2 float sum =0.0; //C1
3 float prod =1.0;
4 for (int i=1;i<=n;i++)
5 {sum=sum + i;
6 prod = prod * i;
7 foo(sum , prod); }}� �

(a) S1, whitespace changes

� �
1 void sumProd(int n) {
2 float sum =0.0; //C1'
3 float prod =1.0; //C
4 for (int i=1;i<=n;i++)
5 {sum=sum + i;
6 prod = prod * i;
7 foo(sum , prod); }}� �

(b) S1, commenting changes� �
1 void sumProd(int n) {
2 float sum =0.0; //C1
3 float prod =1.0;
4 for (int i=1;i<=n;i++){
5 sum=sum + i;
6 prod = prod * i;
7 foo(sum , prod); }}� �

(c) S1, formatting changes

Func Sv R
S1(a) ⟨6, 4, 2, 0, 1, 4⟩  
S1(b) ⟨6, 4, 2, 0, 1, 4⟩  
S1(c) ⟨6, 4, 2, 0, 1, 4⟩  

(d) Slicing Vectors, S1(a)-S1(c)

Figure 6: Scenario-1, Type-1 Clone.

� �
1 void sumProd(int n){
2 float s=0.0; //C1
3 float p =1.0;
4 for (int j=1;j<=n;j++)
5 {s=s + j;
6 p = p * j;
7 foo(s, p); }}� �

(a) S2, systematic renaming

� �
1 void sumProd(int n){
2 float s=0.0; //C1
3 float p = 1.0;
4 for (int j=1;j<=n;j++)
5 {s=s + j;
6 p = p * j;
7 foo(p, s); }}� �

(b) S2,unsystematic renaming� �
1 void sumProd(int n) {
2 int sum=0; //C1
3 int prod =1;
4 for (int i=1;i<=n;i++)
5 {sum=sum + i;
6 prod = prod * i;
7 foo(sum , prod); }}� �

(c) S2, changing types and lit-

erals, not consistent

� �
1 void sumProd(int n) {
2 float sum =0.0; //C1
3 float prod =1.0;
4 for (int i=1;i<=n;i++)
5 {sum=sum + (i*i);
6 prod = prod*(i*i);
7 foo(sum , prod); }}� �

(d) S2, replacing parameters

with expressions

Func Sv R
S2(a) ⟨6, 4, 2, 0, 1, 4⟩  
S2(b) ⟨6, 4, 2, 0, 1, 4⟩  
S2(c) ⟨6, 4, 2, 0, 1, 4⟩  
S2(d) ⟨6, 4, 2, 0, 1, 4⟩  

(e) Slicing Vectors, S2(a)-S2(d)

Figure 7: Scenario-2, Type-2 Clone.

complete PDG/SDG. However, srcSlice produces reliable accuracy
given its speed and lightweight approach.

We encode slicing profiles as vectors and hash them efficiently
using LSH at three levels of granularity. We have implemented
our algorithm in the tool srcClone. We compared srcClone with
two PDG-based tools that use program slicing. Our evaluation
demonstrates that it is practical and scales to millions of lines of
code. This tool is very competitive with other detection tools, and
is capable of producing clones that are related semantically for a
given variable, function, or file.

In the future, we plan to compare srcClone with non-slicing
based and non-PDG based state of the art tools such as: Sourcer-
erCC [35], Oreo [34], and NiCad [31] on standard benchmarks,
such as BigCloneBench [38]. We plan to continue this line of re-
search and provide slice-based clone information that will help
maintainers understand clones across versions. Also, our future

� �
1 void sumProd(int n) {
2 float sum =0.0; //C1
3 float prod = 1.0;
4 for (int i=1;i<=n;i++)
5 {sum=sum + i;
6 prod = prod * i;
7 foo(sum ,prod ,n); }}� �

(a) S3, small insertion line 7

� �
1 void sumProd(int n) {
2 float sum =0.0; //C1
3 float prod = 1.0;
4 for (int i=1;i<=n;i++)
5 {sum=sum + i;
6 prod = prod * i;
7 foo(prod); }}� �

(b) S3, small deletion line 7� �
1 void sumProd(int n) {
2 float sum =0.0; //C1
3 float prod = 1.0;
4 for (int i=1;i<=n;i++)
5 {sum=sum + i;
6 prod = prod * i;
7 if (n % 2)==0 {
8 foo(sum , prod );} }}� �

(c) S3, insert new line 7

� �
1 void sumProd(int n) {
2 float sum =0.0; //C1
3 float prod =1.0;
4 for (int i=1;i<=n;i++)
5 {sum=sum + i;
6 //line deleted
7 foo(sum , prod); }}� �

(d) S3, delete line 6� �
1 void sumProd(int n) {
2 float sum =0.0; //C1
3 float prod =1.0;
4 for (int i=1;i<=n;i++)
5 { if(i%2) sum=sum+i;
6 prod = prod *i;
7 foo(sum , prod); }}� �

(e) S3, changes to whole line 5

Func Sv R
S3(a) ⟨6, 4, 2, 0, 1, 4⟩  
S3(b) ⟨6, 4, 2, 0, 1, 4⟩  
S3(c) ⟨6, 5, 2, 0, 1, 4⟩
S3(d) ⟨5, 3, 1, 0, 1, 4⟩
S3(e) ⟨6, 4, 2, 0, 1, 4⟩  

(f) Slicing Vectors, S3(a)-S3(e)

Figure 8: Scenario-3, Type-3 Clone.� �
1 void sumProd(int n) {
2 float prod =1.0;
3 float sum =0.0; //C1
4 for (int i=1;i<=n;i++)
5 {sum=sum + i;
6 prod = prod * i;
7 foo(sum , prod); }}� �

(a) S4, reorders data indepen-

dent declarations

� �
1 void sumProd(int n) {
2 float sum =0.0; //C1
3 float prod =1.0;
4 for (int i=1;i<=n;i++)
5 {prod = prod * i;
6 sum=sum + i;
7 foo(sum , prod); }}� �

(b) S4, reorders data indepen-

dent statements

� �
1 void sumProd(int n) {
2 float sum =0.0; //C1
3 float prod = 1.0;
4 for (int i=1;i<=n;i++)
5 {sum=sum + i;
6 foo(sum , prod);
7 prod=prod * i; }}� �

(c) S4, reorders data depen-

dent statements

� �
1 void sumProd(int n) {
2 float sum =0.0; //C1
3 float prod = 1.0;
4 int i=0;
5 while (i<=n)
6 { sum=sum + i;
7 prod = prod * i;
8 foo(sum , prod);
9 i++; }}� �

(d) S4, replaces a control state-

ment

Func sv(m) Rate
S4(a) ⟨6, 4, 2, 0, 1, 4⟩  
S4(b) ⟨6, 4, 2, 0, 1, 4⟩  
S4(c) ⟨6, 4, 2, 0, 1, 4⟩  
S4(d) ⟨7, 4, 2, 0, 1, 4⟩

(e) Slicing Vectors, S4(a)-S4(d)

Figure 9: Scenario-4, Type-4 Clone.

effort will be devoted to replicate our analyses on closed source sys-
tems, which might exhibit different results. Finally, an interesting
area of investigation we will pursue is the influence of each field
in the slicing vector. We believe srcClone is an important step
in improving program comprehension and we plan on conducting
further experiments with developers and refinements in the future.
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