Aiding Comprehension of Unit Test Cases and Test Suites
with Stereotype-based Tagging

Boyang Li
College of William and Mary
Williamsburg, VA

Mario Linares-Vasquez
Universidad de los Andes
Bogot4, Colombia

ABSTRACT

Techniques to automatically identify the stereotypes of different
software artifacts (e.g., classes, methods, commits) were previously
presented. Those approaches utilized the techniques to support
comprehension of software artifacts, but those stereotype-based
approaches were not designed to consider the structure and pur-
pose of unit tests, which are widely used in software development
to increase the quality of source code. Moreover, unit tests are dif-
ferent than production code, since they are designed and written
by following different principles and workflows.

In this paper, we present a novel approach, called TeStereo, for
automated tagging of methods in unit tests. The tagging is based
on an original catalog of stereotypes that we have designed to im-
prove the comprehension and navigation of unit tests in a large
test suite. The stereotype tags are automatically selected by us-
ing static control-flow, data-flow, and API call based analyses. To
evaluate the benefits of the stereotypes and the tagging reports,
we conducted a study with 46 students and another survey with
25 Apache developers to (i) validate the accuracy of the inferred
stereotypes, (ii) measure the usefulness of the stereotypes when
writing/understanding unit tests, and (iii) collect feedback on the
usefulness of the generated tagging reports.

CCS CONCEPTS

« Software and its engineering — Software maintenance tools;

KEYWORDS

Unit test cases, program comprehension, maintaining software

ACM Reference Format:

Boyang Li, Christopher Vendome, Mario Linares-Vasquez, and Denys Poshy-
vanyk. 2018. Aiding Comprehension of Unit Test Cases and Test Suites with
Stereotype-based Tagging . In ICPC ’18: ICPC ’18: 26th IEEE/ACM Interna-
tional Confernece on Program Comprehension , May 27-28, 2018, Gothenburg,
Sweden. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3196321.
3196339

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPC ’18, May 27-28, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5714-2/18/05...$15.00
https://doi.org/10.1145/3196321.3196339

Christopher Vendome
College of William and Mary
Williamsburg, VA

Denys Poshyvanyk
College of William and Mary
Williamsburg, VA

1 INTRODUCTION

Unit testing is considered to be one of the most popular automated
techniques to detect bugs in software, perform regression testing,
and, in general, to write better code [32, 44]. In fact, unit testing is
(i) the foundation for approaches such as Test First Development
(TFD) [16] and Test-Driven Development (TDD) [11, 15], (ii) one of
the required practices in agile methods such as XP [16], and (iii) has
inspired other approaches such as Behavior-Driven Development
(BDD) [50]. In general, unit testing requires writing “test code" by
relying on APIs such as the XUnit family [2, 4, 6] or Mock-based
APIs such as Mockito [3] and JMockit [1].

Besides the usage of specific APIs for testing purposes, unit test
code includes calls to the system under test, underlying APIs (e.g.,
the Java API), and programming structures (e.g., loops and condi-
tionals), similarly to production code (i.e., non-test code). Therefore,
unit test code can also exhibit issues such as bad smells [14, 63], poor
readability, and textual/syntactic characteristics that impact pro-
gram understanding. In addition, despite the existence of tools for
automatic generation of unit test code [12, 27-29, 51, 55], automati-
cally generated test cases (i.e., unit tests) are difficult to understand
and maintain [52]. As a response to the aforementioned issues,
several guidelines for writing and refactoring unit tests have been
proposed [32, 44, 63].

To bridge this gap, this work proposes a novel automated catalog
of stereotypes for methods in unit tests; the catalog was designed
with the goal of improving the comprehension of unit tests and
navigability of large test suites. The approach is a complementary
technique to the existing approaches [36, 40, 52], which generate de-
tailed summaries for each test method without considering method
stereotypes at the test suite level.

While code stereotypes reflect high-level descriptions of the
roles of a code unit (e.g., a class or a method) and have been defined
before for production code [7, 22, 24], our catalog is first to capture
unit test case specific stereotypes. Based on the catalog, the paper
also presents an approach, coined as TESTEREO, for automatically
tagging methods in unit tests according to the stereotypes to which
they belong. TESTEREO generates browsable documentation for a
test suite (e.g., an html-based report), which includes navigation
features, source code, and the unit tests tags. TESTEREO generates
the stereotypes at unit test method level by identifying (i) any API
call or references to the JUnit API (i.e., assertions, assumptions, fails,
annotations), (ii) inter-procedural calls to the methods in the same
unit test and external methods (i.e., internal methods or external
APIs), and (iii) control/data-flows related to any method call.

https://doi.org/10.1145/3196321.3196339
https://doi.org/10.1145/3196321.3196339
https://doi.org/10.1145/3196321.3196339

ICPC 18, May 27-28, 2018, Gothenburg, Sweden

To validate the accuracy and usefulness of test case stereotypes
and TESTEREO’s reports, we designed and conducted three experi-
ments based on 231 Apache projects as well as 210 test case methods,
which were selected from the Apache projects by using a sampling
procedure aimed at getting a diverse set of methods in terms of
size, number, and type of stereotypes detected in the methods (Sec-
tion 4.2). In these projects, TESTEREO detected an average of 1,577
unit test stereotypes per system, which had an average of 5.90
unit test methods per test class (total of 168,987 unit test methods
from 28,644 unit test classes). When considering the total dataset,
the prevalence of any single stereotype ranged from 482 to 67,474
instance of the stereotype. In addition, we surveyed 25 Apache de-
velopers regarding their impressions and feedback on TESTEREO s
reports. Our experimental results show that (i) TESTEREO achieves
very high precision and recall for detecting the proposed unit test
stereotypes; (ii) the proposed stereotypes improve comprehension
of unit test cases during maintenance tasks; and (iii) most of the
developers agreed that stereotypes and reports are useful for test
case comprehension.

In summary, this paper makes the following contributions: (i) a
catalog of 21 stereotypes for methods in unit tests that extensively
consider the JUnit API, external/internal inter-procedure calls, and
control/data-flows in unit test methods; (ii) a static analysis-based
approach for identifying unit test stereotypes; (iii) an open source
tool that implements the proposed approach and generates stereotype-
based reports documenting test suites '; and (iv) an extensive online
appendix [5] that includes test-case related statistics of the analyzed
Apache projects, the TESTEREO reports of the 231 Apache projects,
and the detailed data collected during the studies.

2 UNIT TEST CASE STEREOTYPES

In this section, we provide some background on stereotypes and
describe the catalog of stereotypes that we have designed for unit
tests methods.

Code stereotypes reflect roles of program entities (e.g., a class
or a method) in a system, and those roles can be used for main-
tenance tasks such as design recovery, feature location, program
comprehension, and pattern/anti-pattern detection [8, 23, 24]. Al-
though detecting stereotypes is a task that can be done manually,
it is prohibitively time-consuming in the case of a large software
system [23, 24]. Therefore, automated approaches have been pro-
posed to detect stereotypes for entities such as classes, methods,
and commits [21, 23, 24]. However, the previously proposed catalog
of stereotypes were not designed to consider the structure and pur-
pose of unit tests; unit test cases are different than other artifacts,
since unit tests are designed by following different principles and
workflow than non-test code [19, 32, 44].

Consequently, we designed a catalog of 21 stereotypes for unit
test methods (Table 1), under the hypothesis that stereotypes could
help developers/testers to understand the responsibilities of unit
tests within a test suite. Also, stereotypes may reflect a high-level
description of the role of a unit test case. For instance, stereotypes
such as “Exception verifier”, “Iterative verifier”, and “Empty test” are
descriptive “tags” that can help developers to (i) identify the general
purpose of the methods without exploring the source code, and
(ii) navigate large test suites. Therefore, the stereotypes can be
used as “tags" that annotate the unit test directly in the IDE, or in

!https://github.com/boyangwm/TestStereotype/

Boyang Li, Christopher Vendome, Mario Linares-Vasquez, and Denys Poshyvanyk

[TestCleaner] [EmptyTester]
@After public void tearDown() throws Exception { }

Figure 1: Test Cleaner and Empty Tester method from
SessionTrackerCheckTest unit test in Zookeeper.

[TestInitializer| [InternalCallVerifier]
[NuIlVerifier] [IdentityVerifier] [HybridVerifier]
@efore @Ooverride public void setUp() throws Exception {
super.setUp();
this.tomcat=getTomcatInstance();
this.context=this.tomcat.addContext("/weaving",WEBAPP_DOC_BASE);
this.tomcat.start();
ClassLoader
loader=this.context.getLoader().getClassLoader();
assertNotNull("The class loader should not be
null.",loader);
assertSame("The class loader is not
correct.",WebappClassLoader.class,loader.getClass());
this.loader=(WebappClassLoader)loader;}

Figure 2: Test initializer method (from
TestWebappClassLoaderWeaving unit test in Tomcat) with
other stereotypes detected by TESTEREO.

external documentation (e.g., an html report). The tags can be assist
navigation/classification of test methods in large test suites. For
example, it is time-consuming to manually identify test initializers
that are also verifiers in a project like Opene jb with 317 test classes
and 1641 test method tags.

Note that the catalog we propose in this paper focuses on unit
tests relying on the JUnit API; we based this decision on the fact
that in a sample of 381,161 open source systems from GitHub that
we analyzed (by relying on a mining-based study) only 134 of the
systems used a mock-style-only APIs while 8,556 systems used
JUnit-only APIs.

The full list of stereotypes are described with their explanations
in the following subsections and in Table 1, where we list the stereo-
types, a brief description, and the rules used for their detection. The
stereotypes were defined by considering how values or objects are
verified in a unit test case, the responsibilities of the test case, and
the data/control-flows in the unit test case. Therefore, we catego-
rized the stereotypes in two categories that reflect the usage of the
JUnit API, and the data/control-flows in the methods. Note that the
categories and stereotypes are not mutually exclusive, because our
goal is to provide developers/testers with a mechanism to navigate
large test suites or identify unit test methods with multiple pur-
poses. For example, the method in Figure 1 is an “Empty tester" and
“Test Cleaner"; assuming that the methods are annotated (in some-
way) with the tags (i.e., stereotypes), developers/testers can locate
all unimplemented methods in the test suite (i.e., the empty testers),
which will also be executed the last during the test unit execution
(i.e., the test cleaners). Another example of potential usage of the
tags, is detecting strange or potentially smelly methods, such as
the “Test initializer” (i.e., a method with the @Before annotation)
method depicted in Figure 2, which has other tags such as “Internal
Call Verifier", and “Null Verifier"; we think this is a smelly methods
because test initializer are not supposed to have assertions.

2.1 JUnit API-based Stereotypes

Assertions in the JUnit API have well-defined semantics that can be
used to automatically infer or document the purpose of a test case
[40, 52]. However, besides assertions for validating logical condi-

tions between expected and real results (e.g., assertEquals(int, int)),

Aiding Comprehension of Unit Test Cases and Test Suites
with Stereotype-based Tagging

ICPC ’18, May 27-28, 2018, Gothenburg, Sweden

Table 1: Proposed Stereotypes for Methods in Unit Test Cases.

Type Description Rules

Boolean verifier Verifies boolean conditions Contains assertTrue || Contains assertFalse

Null verifier Verifies whether objects are null Contains assertNull || Contains assertNotNull

Equality verifier Verifies whether objects/variables are equal to an expected Contains assertEquals || Contains assertArrayEquals || Contains

value
Identity verifier

ject/variable
Utility verifier

explicitly a failure
Exception verifier
cution
Verifies logic rules using matcher-style statements
Sets implicit assumptions

Condition Matcher
Assumption setter
Test initializer
Test cleaner

JUnit API-Based

Releases resources used by the test cases

Logger Invokes logging operations

Ignored method Is not executed with the test suite

Hybrid verifier Contains more than one JUnit-based stereotype
Unclassified Is not categorized by any of the available tags

Verifies whether two objects/variables refer to the same ob-
Verifies (un)successful execution of the test case by reporting

Verifies that exceptions are thrown during the test case exe-

Allocates resources before the execution of the test cases

assertNotEquals
Contains assertSame | | Contains assertNotSame

Contains fail

Has Expected attribute with the value class Exception or classes inherited
from Exception

Contains assertThat

Contains assumeThat | | Contains assumeTrue

Has annotation @Before | | Has annotation @BeforeClass

Has annotation @After || Has annotation @AfterClass

Calls functions in PrintStream class | | Calls functions in Logger class

Has annotation @Ignore

Number of matched JUnit-based stereotype > 1

Number of matched JUnit-based stereotype ==

Verifies assertions inside branch conditions
Verifies assertions in iterations
Verifies values related to public fields

Branch verifier
Iterative verifier
Public field verifier
APT utility verifier
braries)
Internal call verifier Verifies values of variables related to AUT calls
Execution tester
Empty tester

C/D-Flow Based

Is an empty test case

Executes/invoke methods but no assertions are verified

Verifies values of variables related to API calls (External li-

Number of assertions within branch conditions > 0

Number of assertions within iterations > 0

Actual values in assertions are from public field accesses

Actual values in assertions are values of objects/variables related to API calls

Actual values in assertions are values of objects/variables related to AUT calls
Number of assertions == 0 && number of function calls > 0
Number of lines of codes in method body ==

@Test public void existingConfigurationReturned(){
Configuration conf=new Configuration(false);
conf.set("foo","bar");

Configuration conf2=CredentialProviderFactoryShim
.getConfiguration(conf,"jceks:///file/accumulo.jceks");

Assert.assertSame(conf,conf2);

Assert.assertEquals("bar",conf.get("foo"));}

Figure 3: Source code of the existingConfigurationReturned
unit test method in the Apache-accumulo.

JUnit provides other APIs for defining assumptions, expected excep-
tions, matching conditions, explicit declaration of failures, fixture
setters, and cleaners, which have not been considered in prior work
in automatic generation of documentation. Our catalog includes
stereotypes for each one of those cases, because those APIs can
reflect different purposes and responsibilities of the methods using
the unit testing APIs.

The stereotypes in this category are detected by (i) building an
Abstract Syntax Tree (AST) for each method, (ii) looking for invo-
cations to methods and annotations with the same signature from
the JUnit API, and (iii) using the set of rules listed in Table 1. For
instance, Figure 3 is an example of Identity verifier and Equality
verifier. The difference between those two stereotypes is that the
former focuses on testing whether two objects are the same ref-
erence, while the latter focuses on verifying that the objects are
the same (by using the equals method). In Figure 3, the assertion
(in line 6) is an identity assert, since the function call assertSame
asserts that conf2 should be the same object reference as conf
(indicated as Identity verifier). In line 7, assertEquals asserts that
the returned string, by calling conf.get("foo"), is equal to "bar"
(indicated as Equality verifier).

In addition to the API-based stereotypes, we also defined two
stereotypes for cases in which a unit test case contains more than
one JUnit-based stereotype (i.e., Hybrid verifier), and cases where
TESTEREO was not able to detect any of the stereotypes (i.e., Unclas-
sified). Because of space limitations, we do not show examples for

@Test public void testConstructorMixedStyle(){
Path p = new Path(project, "\\a;\\b:/c");
String[] 1 = p.list();
assertEquals("three items, mixed style", 3,

1.length);

if (isUnixStyle) {
assertEquals("/a", 1[01);
assertEquals("/b", 1[11);
assertEquals("/c", 1[2]);

} else if (isNetWare) {
assertEquals("\\a", 1[@]);
assertEquals("\\b", 1[1]);
assertEquals("\\c", 1[2]);

Yelse { ... }}

Figure 4: Source code of the testConstructorMixedStyle unit
test method in the Apache-ant system.

all the stereotypes; however, more examples can be found in our
online appendix [5].

2.2 Data-/Control-flow Based Stereotypes

The API-based stereotypes (Section 2.1) describe the purpose of
the API invocations; however, those stereotypes neither describe
how the unit test cases use the APIs nor from where the examined
data (i.e., arguments to the API methods) originates. Therefore, we
extended the list of stereotypes with a second category based on
data/control-flow analyses, because these analyses can capture the
information missing in API-based stereotypes.

Using control-flow information, we defined two stereotypes for
reporting whether the JUnit API methods are invoked inside a
loop (i.e., an Iterative Verifier) or inside conditional branches (i.e.,
a Branch Verifier). For example, the unit test case in Figure 4 is a
Branch Verifier, which verifies that the constructor of class Path is
able to handle mixed system path styles (i.e., Unix, NetWare, etc.).

Using data-flow information, we defined stereotypes that de-
scribe when the arguments to the JUnit API calls are from (i) ac-
cesses to public fields (Public Field Verifier), (ii) API calls different
to JUnit (API Utility Verifier), or (iii) calls to the application under
test (AUT) (Internal Call Verifier). For example, the unit test case

ICPC 18, May 27-28, 2018, Gothenburg, Sweden

@Test public void testRead() throws Exception {
testConfigure();
Locator locator=new Locator("evarl",_pid,_iid); 3
Value value=new Value(locator,_ell,null); !
value=_engine.writeValue(_varType,value);
Value readVal=_engine.readValue(_varType,value.locator);
assertEquals(_iid,readVal.locator.iid);
assertEquals(_pid,readval.locator.pid);
assertEquals(2,DOMUtils.countKids((Element)

readVal.locator.reference,Node.ELEMENT_NODE));}

Figure 5: Source code of the testRead unit test method in the
ode system.

in Figure 5 is a Public Field Verifier, which verifies the attributes
in readVal.locator have the expected values. The data flow is
from line 4 where the value object is created, to line 6 where the
public field value.locator is accessed and used as an argument
for a method invocation that is assigned to readVal. There is also a
stereotype for methods in unit tests that do not verify assertions but
invoke internal or external methods (Execution Tester). Finally, we
included a stereotype that describes empty methods (Empty tester);
developers/testers can use this type of stereotype to easily locate
unimplemented methods in the test suite. Our online appendix[5]
has examples of each stereotype.

3 DOCUMENTING UNIT TEST CASES WITH
TESTEREO

TESTEREO is an approach for automatically documenting unit test
suites that (i) tags methods in test cases by using the stereotypes
and rules defined in Section 2, and (ii) builds an html-formatted
report that includes the tags, source code, and navigation features,
such as filters and navigation trees. In addition, for each method in a
unit test, TESTEREO generates a summary based on the descriptions
of each stereotype. TESTEREO is a novel approach that combines
static analysis and code summarization techniques in order to au-
tomatically generate tags and natural language-based descriptions
aiming at concisely documenting the purpose of test cases.

TESTEREO can be summarized in the following workflow:

1. Test case detection. The starting point of TESTEREO is the
source code of the system (including the test cases). TESTEREO first
analyzes the source code to identify all the unit test cases by de-
tecting the methods in the source code that are annotated with
@Test,@Before, @BeforeClass, @After, @Afterclass and @Ignore;

2.]JUnit API call detection. The source code methods identified
as test cases are then analyzed statically by scanning and detecting
invocations to annotations and methods from the JUnit API;

3. Data/Control-flow analyses. Data-flow dependencies be-
tween the JUnit API calls and the variables defined in the analyzed
method are identified by performing static backward slicing [35];
in addition, the collected references to the API calls are augmented
with boolean flags reporting whether the calls are made inside
loops or conditional branches. TESTEREO performs a lightweight
over-approximate analysis for each argument v in an JUnit API call
to compute all potential paths (including internal function calls,
Java API calls, and public field accesses) that may influence the
value of v by using backward slicing [35]. Although TESTEREO does
not track any branch conditions in the unit test case (some paths
may not be executed with certain inputs), the over-approximation
guarantees that potential slices are not missed in the backward
slicing relationships;

Boyang Li, Christopher Vendome, Mario Linares-Vasquez, and Denys Poshyvanyk

4. Stereotype detection. TESTEREO uses the data collected in
the previous steps, and then applies the rules listed in Table 1 to
classify the unit tests into defined stereotype categories;

5. Report generation. Finally, each method is documented (as
in Figure 7) and all the method level documents are organized
in an html-based report. We encourage an interested reader to
see the reports generated for 231 Apache projects in our online
appendix [5].

4 EMPIRICAL STUDY

We conducted an empirical study aimed at (i) validating the ac-
curacy of TESTEREO-generated test case stereotypes, and (ii) the
usefulness of the stereotypes and the reports for supporting evo-
lution and maintenance of unit tests. We relied on CS students,
researchers, and the original developers of Apache projects to
perform the study. In particular, the context of the study encom-
passes 210 methods randomly selected from unit tests in 231 Apache
projects, 231 TESTEREO reports, 420 manually generated summaries,
25 Apache developers, and 46 students and researchers. The per-
spective is of researchers interested in techniques and tools for
improving program comprehension and automatic documentation
of unit tests.

4.1 Research Questions

In the context of our study, we investigated the following three
research questions (RQs):

RQq: What is TESTEREO’s accuracy for identifying unit test stereo-
types? Before using the stereotypes in experiments with
students, researchers, and practitioners, we wanted to mea-
sure TESTEREO’s accuracy in terms of precision and recall.
The rules used for stereotype identification are based on
static detection of API calls and data/control flow analy-
ses. Therefore, with RQj, we aim at identifying whether
TESTEREO generates false positives or false negatives and the
reasons behind them.

RQy: Do the proposed stereotypes improve comprehension of tests
cases (i.e., methods in test units)? The main goal of method
stereotypes is to describe the general purposes of the test
cases in a unit test. Our hypothesis is that the proposed
stereotypes should help developers in evolution and main-
tenance tasks that require program comprehension of unit
tests. RQ2 aims at testing the hypothesis, in particular, when
using the task of manually generating summaries/descrip-
tions for methods in unit tests (with and without stereotypes)
as a reference.

RQs: What are the developers’ perspectives of the TESTEREO-based
reports for systems in which they contributed? TESTEREO not
only identifies test stereotypes at method level, but also
generates html reports (i.e., documentation) that includes
source code, stereotypes, short stereotype-based summaries,
and navigation features. Thus, RQ3 aims at validating with
practitioners (i) if the stereotypes and reports are useful for
software-related tasks, (ii) what features in the reports are
the most useful, and (iii) what improvements should be done
to the reports if any.

The three RQs are complementary for TESTEREO’s evaluation.
RQ; focuses on the quality of stereotype identification; we asked

Aiding Comprehension of Unit Test Cases and Test Suites
with Stereotype-based Tagging

graduate CS students from a research university to manually iden-
tify the stereotypes on a sample of methods from unit tests; then,
we computed micro and macro precision and recall metrics [57]
between the gold-set generated by the students and the stereotypes
identified by TESTEREO on the same sample. With RQ;, we also
manually checked the cases in which TESTEREO was not able to
correctly identify the stereotypes, and then improved our imple-
mentation. RQ» focuses on the usefulness of method stereotypes
in unit tests; thus, we first asked students and researchers to write
summaries of the methods (when reading the code with and without
stereotypes). Then, giving the source code and manually written
summaries, we asked another group of students and researchers to
evaluate the summaries in terms of completeness, conciseness, and
expressiveness [17, 40, 46, 58]. Note that there is no overlap among
the participants assigned to RQ; and RQ3. Finally, RQ3 focuses on
the usefulness of stereotypes and reports from the practitioners’
perspective.

4.2 Context Selection

For the three RQs, we used the population of unit tests included in
231 Apache projects with source code available at GitHub. The list
of projects is provided in our online appendix [5]. Our preference for
Apache projects is motivated by the fact that they have been widely
used in previous studies performed by the research community [13,
45, 54], and unit tests in these projects are highly diverse in terms
of method stereotypes, methods size (i.e., LOC), and the number
of stereotypes. In the 231 projects, we detected a total of 27,923
unit tests, which account for 164,373 methods. Figures describing
the diversity of the unit tests in 231 projects are in our online
appendix [5]. On average, the methods have 14.67 LOC (median=10),
the first quartile Q1 is 6 LOC, and the third quartile Q3 is 18 LOC.
Concerning the number of stereotypes per system, on average,
TeSTEREO identified 1,577 stereotypes in the unit tests (median=489).
All 231 Apache projects exhibited at least 482 instances of each
stereotype in the unit test methods, having EqualityVerifier as the
most frequent method stereotype (64,474 instances). Finally, most
of the methods (i.e., 73,906) have only one stereotype; however,
there are cases with more than one stereotype, having a limit of
92 methods with 9 stereotypes each. In summary, the sample of
Apache projects is diverse in terms of size of methods in the unit
tests and the identified stereotypes (all 21 stereotypes were widely
identified). Hereinafter, we will refer to the set of all the unit tests
in 231 Apache projects as UTapache-

Because of the large set of unit test methods in UT4p4cpe (.,
164,373 methods), we sampled a smaller set of methods that could
be evaluated during our experiments; we call this set Msampie,
which is composed of 210 methods systematically sampled from
the methods in UTapgche- The reason for choosing 210 methods
is that we wanted to have in the sample at least 10 methods repre-
sentative of each stereotype (21 stereotypes xX10 methods = 210).
Subsequently, given the target size for the sample, we designed
a systematic sampling process looking for diversity in terms of
not only stereotypes and the number of stereotypes per method
but also selecting methods with a “representative” size (by “rep-
resentative" we mean that the size is defined by the 50% of the
original population). Therefore, we selected methods with LOC
between Q1 = 6 and Q3 = 18. Consequently, after selecting only
the methods with LOC € [Q1,0Q3], we sampled them in buckets

ICPC ’18, May 27-28, 2018, Gothenburg, Sweden

Algorithm 1: Sampling procedure of methods from the whole
set of unit test in the 231 Apache projects.

(2)
Input: Bistereotype) Bistereorypey Blnstereotype)

Output: My g/
1 begin

2 N =[1..9], ST =[*Logger”...“Unclassified");

3 Msample =0:Counter(siereotypey = 0

4 foreach (n, stereotype) € N x ST do

5 m = pickRandomFrom (B, stereotqpe>):

6 if M & Mg gpmple then

7 Msample‘add“"):

8 Cu“"tgr(stereotype)*'*'?

9 while |My gy prel < 210 do

10 foreach stereotype € ST do

11 if CU“"tEr(stereotype) < 10 then

12 selected = FALSE;

13 m :pickRundomFrum(B<Stereotype>);
14 if M & Mg gl then

15 | selected = TRUE;

16 if Iselected then

17 m :pickRandomFrom(BE?tereotype>);
18 if M ¢ Mg gmple then

19 | selected =TRUE;

20 if selected then

21 Alsample.add(m);

22 Cou"ter<stereotype> ++;

indexed by the stereotype (B(stercotype))s and buckets indexed by
the number of stereotypes identified in the methods and the stereo-
types (B(n,stereotype)); for instance, Binuiiverifiery is the set of
methods with the stereotype NullVerifier, and the set B(z Logger)
has all the methods with two stereotypes and one of the stereo-
types is Logger. Note that a method may appear in different buckets
B(n,stereotype) for a given n, because a method can exhibit one or
more stereotypes. We also built a second group of buckets indexed

by stereotype (Bgierw type))’ but with the methods with LOC in
(03,30].
The complete procedure for generating Mg gmp1e from the buck-

ets B(stereotype% Bg;ereotypz)’ and B(n,stereotype) is depicted in
Algorithm 1. The first part of the Algorithm (i.e,, lines 5 to 10) is
to assure that Mg,,p1e has a least one method for each combi-
nation (n,stereotype); then, the second part (i.e., lines 11 to 25)
is to balance the selection across different methods exhibiting all
the stereotypes. Note that we use a work list to assure sampling

without replacement. When we were not able to find methods in

2
B(stereotype), we sampled the methods from Bgs)tereotype) . The

charts and values describing Mg ,,p, are provided in our online
appendix[5].

Regarding the human subjects involved in the study, for the
manual identification of stereotypes required for RQq, we selected
four members of the authors’ research lab that did not have any
knowledge about the system selection or TESTEREO internals to
avoid bias that could be introduced by the authors, and had multi-
ple years of object-oriented development experience; hereinafter,
we will refer to this group of participants as the Taggers. For the
tasks required with RQ3 (i.e., writing or evaluating summaries), we
contacted (via email) students from the SE classes at the authors’
university and external students and researchers. From the partici-
pants that accepted the invitation, we selected three groups that we
will refer to as SW_TeStereor SWiTeStereo, and SR, which stand

ICPC 18, May 27-28, 2018, Gothenburg, Sweden

for summary writers without access to the stereotypes, summary
writers with access to the stereotypes, and summary readers, re-
spectively; note that there was no overlap of participants between
the three groups. For the evaluation in RQ3, we mined the list of
contributors of the 231 Apache projects; we call this group of partic-
ipants as AD (Apache Developers). We identified the contributors
of the projects and contacted them by email to participate in the
study. We sent out e-mails listing only the links to the projects to
which developers actually contributed (i.e., developers were not
contacted multiple times for each project). In the end, we collected
25 completed responses from Apache developers.

4.3 Experimental Design

To answer RQy, we randomly split Mggpmpie into two groups, and
then we conducted a user study in which we asked four Taggers to
manually identify the proposed stereotypes from the methods in
both groups (i.e., each Tagger read 105 methods). Before the study,
one of the authors met with the Taggers and explained the stereo-
types to them. During the study, the methods were displayed to the
Taggers in an html-based format using syntax highlighting. After
the tagging, we asked the Taggers to review their answers and solve
disagreements (if any) after a follow-up meeting. In this meeting,
we did not correct the taggers, rather we explained stereotypes that
were completely omitted (without presenting the methods from
the sample) in order to clarify them; subsequently, the Taggers
were able to amend the original tags or keep them the same as
they saw fit (we did not urge them to alter any tags). In the end,
they provided us with a list of stereotypes for the analyzed meth-
ods. We compared the stereotypes identified by TESTEREO to the
stereotypes provided by the Taggers. Because of the multi-label
classification nature of the process, we measured the accuracy of
TESTEREO by using four metrics widely used with multi-class/label
problems [57]: micro-averaging recall (uRC), micro-averaging pre-
cision (¢PC), macro-averaging recall (MRC), and macro-averaging
precision (MPC). The rationale for using micro and macro versions
of precision and recall was to measure the accuracy globally (i.e.,
micro) and at stereotype level (i.e., macro). We discuss the results
of RQj in Section 5.1.

To answer RQy, for each method in Mggmpie. We automatically
built two html versions (with syntax highlighting) of the source
code: with and without stereotype tags. The version with tags was
assigned to participants in group SWyTestereo, and the version
without tags was assigned to participants in SW_TeSsereo- Each
group of participants had 14 people; therefore, each participant was
asked to (i) read 15 methods randomly selected (without replace-
ment) from Mggpmpje, and (ii) write a summary for each method.
Note that the participants in SW_T¢stereo had no prior knowledge
of our proposed stereotypes. In the end, we obtained two summaries
for each method of the 210 methods m; (14X 15 = 210 methods): one

based only on source code (¢’ ;. ¢, ,,)> 21 one based on source

code and stereotypes (ciT). After collecting the summaries,
eStereo
each of the 14 participants in the group SR (i.e., summary readers)
were asked to read 15 methods and evaluate the quality of the two
summaries written previously for each method. The readers did
not know from where the summaries came from, and they got to
see the summaries in pairs with the test code at the same time.
The quality was evaluated by following a similar procedure and

using quality attributes as done in previous studies for automatic

Boyang Li, Christopher Vendome, Mario Linares-Vasquez, and Denys Poshyvanyk

Table 2: Accuracy Metrics for Stereotype Detection. The ta-
ble lists the results for the first round of manual annotation,
and second round (in bold) after solving inconsistencies.

Group nPC HRC MPC MRC
G1 0.87 (0.98) 0.82(0.89) 0.82(0.99) 0.77 (0.92)
G2 0.80 (0.95) 0.89(0.94) 0.80(0.94) 0.84(0.94)

generation of documentation [17, 40, 46, 58]. The summaries were
evaluated by the participants in terms of completeness, conciseness,
and expressiveness. Section 5.2 discusses the results for RQ5.

Finally, to answer RQs3, we distributed a survey to Apache de-
velopers in which we asked them to evaluate the usefulness of
TESTEREO reports and stereotypes. The developers were contacted
via email; each developer was provided with (i) a TESTEREO html
report that was generated for one Apache project to which the de-
veloper contributes, and (ii) a link to the survey. For developers who
contributed to multiple Apache projects, we randomly assigned one
report (from the contributions). The survey consisted of two parts
of questions: background and questions related to TESTEREO reports
and the stereotypes. Section 5.3 lists the questions in the second
part; the demographic questions are listed in our online appendix[5].
The answers were analyzed using descriptive statistics for the sin-
gle/multiple choice questions; and, in the case of open questions,
the authors manually analyzed the free text responses using open
coding [31]. More specifically, we analyzed the collected data based
on the distributions of choices and also checked the free-text re-
sponses in depth to understand the rationale behind the choices.
The results for RQ3 are discussed in Section 5.3.

5 EMPIRICAL RESULTS

In this section, we discuss the results for each research question.

5.1 What is TeStereo’s accuracy for identifying
stereotypes?

Four annotators manually identified stereotypes from 210 unit meth-
ods in Mggmpe- Note that the annotators worked independently
in two groups, and each group worked with 105 methods. The
accuracy of TESTEREO measured against the set of stereotypes re-
ported by the annotators is listed in Table 2. In summary, there
was a total of 102 (2.31%) false negatives (i.e., TESTEREO missed the
stereotype) and 118 (2.68%) false positives (i.e., the Taggers missed
the stereotype) in both groups.

We manually checked the false negatives and false positives
in order to understand why TESTEREO failed to identify a stereo-
type or misidentified a stereotype. TESTEREO did not detect some
stereotypes (i.e., false negatives) in which the purpose is defined
by inter-procedural calls, in particular Logger, APIUtilityVerifier
and InternalCallVerifier. For instance, the stereotype Logger is for
unit tests methods performing logging operations by calling the
Java PrintStream and Logger APIs; however, there are cases in
which the test cases invoke custom logging methods or loggers
from other APIs (e.g., XmlLogger from Apache ant). The unit test
case in Figure 6 illustrates the issue; while it was tagged as a Logger
by the Taggers, it was not tagged by TESTEREO because XmlLogger
is different than the standard Java logging. Few cases of the false
negatives were implementation issues; therefore, we used the false
positives to improve the stereotypes detection.

Because the Taggers were not able to properly detect some
stereotypes (i.e., false positives), we re-explained to them the missed

Aiding Comprehension of Unit Test Cases and Test Suites
with Stereotype-based Tagging

@Test public void test() throws Throwable {
final XmlLogger logger = new XmlLogger();
final Cvs task = new Cvs();
final BuildEvent event = new BuildEvent(task);
logger.buildStarted(event);
logger.buildFinished(event);}

Figure 6: Logger missed by TESTEREO.

stereotypes (using the name and rules and without showing meth-
ods from the sample); in some cases, participants did not tag meth-
ods with the “Test Initializer" stereotype, because they did not
notice the custom annotation @efore. Afterward, we generated
a new version of the sample (same methods but with improved
stereotypes detection), and then we asked the Taggers to perform
a second round of tagging. We only asked the annotators to re-tag
the methods in the false positive and false negative sets. Finally, we
recomputed the metrics, and the results for the second round are
shown in bold in Table 2. The results from the second round showed
that TESTEREO’s accuracy improved and the inconsistencies were
reduced to 64 (1.45%) false negatives and 25 (0.57%) false positives.
The future work will be devoted to improving the data flow analysis
and fixing the false negatives.

Summary for RQ;. TESTEREO is able to detect stereotypes with
high accuracy (precision and recall), even detecting cases in which
human annotators fail. However, it has some limitations due to
the current implementation of the data-flow based analysis.

5.2 Do the proposed stereotypes improve
comprehension of tests cases (i.e., methods
in test units)?

To identify whether the stereotypes improve comprehension of
methods in unit tests, we measured how good the manually written

summaries are when the test cases include (or not) the TESTEREO stereo-

types. We first collected manually generated summaries from the
two participant groups SWiTestereo and SW_res;ereo as described
in Section 4. Then, the summaries were evaluated by a different
group of participants who read and evaluated the summaries.
During the “writing" phase we asked the participants to indicate
with “N/A" when they were not able to write a summary because
of lack of either context or information or they were not able to
understand the method under analysis. In 78 out of 420 cases, we
got “N/A" as a response from the summary writers; 55 cases were
from the participants using only the source code and 23 cases were
from participants using the source code and the stereotypes. In
total, 64 methods had only one version of the summary available
(7 methods had two “N/A"); therefore, the summary readers only
evaluated the summaries for 139 (210—64—7) methods in which both
versions of the summary were available. Consequently, during the
reading phase, 278 summaries were evaluated by 14 participants. It
is worth noting that according to the design of the experiment each
participant had to evaluate the summaries for 15 methods; however,
because of the discarded methods, some of the participants were
assigned with fewer than 15 methods. The results for completeness,
conciseness, and expressiveness are summarized in Table 3.
Completeness. This attribute is intended to measure whether
the summary writers were able to include important information in
the summary, which represents a high level of understanding of the
code under analysis [46]. In terms of completeness, there is a clear

ICPC ’18, May 27-28, 2018, Gothenburg, Sweden

Table 3: Questions used for RQ; and the # of answers pro-
vided by the participants for the summaries written without
(SW_TeStereo) and with (SWiTesiereo) access to stereotypes.

Do you think the message is complete? SW_restereo |SWiTeStereo
© Does not miss any imp. info. 46(33.1%) 80(57.6%)

® Misses some important info. 63(45.3%) 47(33.8%)

® Misses the majority of imp. info. 30(21.6%) 12(8.6%)

Do you think the message is concise? SW_Testereo |SWiTeStereo
e Contains no redundant info. 95(68.3%) 95(68.3%)

o Contains some redundant info. 35(25.1%) 35(25.1%)

e Contains a lot of redundant info. 9(6.4%) 9(6.4%)

Do you think the description is expressive?| SW_r¢stereo |SWiTeStereo
o Is easy to read and understand 90(64.7%) 78(56.1%)
o Is somewhat readable 35(25.2%) 42(30.2%)
o Is hard to read and understand 14(10.1%) 19(13.7%)

difference between the summaries written by participants that had
the TESTEREO stereotypes and those that did not have stereotypes;
while 80 summaries from SWyTestereo Were ranked as not missing
any information, 46 from SW_T¢stereo Were ranked in the same
category. On the other side of the scale, only 12 summaries from
SWiTeStereo Were considered to miss the majority of the impor-
tant info, compared to 30 summaries from SW_T¢stereo- Thus, the
writers assisted with TESTEREO stereotypes were able to provide
better summaries (in terms of completeness), which suggests that
the stereotypes helped them to comprehend the test cases better.
Something interesting to highlight here is the fact that some of the
writers (from SW, TeStereo) included in their summary information
based on the stereotypes: “This is a test initializer.", “initialize an
empty test case", “This method checks whether ‘slingld’ is null and
‘equals’ equals to expected.", “This is an empty test that does nothing."
, “This is an ignored test method which validates if the fixture is in-
stalled.", and “this setup will be run before the unit test is run and it
may throw exception".

Conciseness. This attribute evaluates if the summaries contain
redundant information. Surprisingly, the results are the same for
both types of summaries (Table 3); 95 summaries from each group
(SWiTestereo and SW_Testereo) Were evaluated as not containing
redundant information, and only nine summaries from each group
were ranked as including significant amount of redundant informa-
tion. This is surprising coincidence for which we can not have a
clear explanation. However, examples of summaries ranked with a
low conciseness show the usage of extra but unrelated information
added by the writer: “Not sure what is going on here, but the end
results is checking if r7 == ‘ABB: Hello A from BBB’", “Maybe it’s
testing to see if a certain language is comparable to another, but I can’t
tell', and “this one has an ignore annotation will run like a normal
method which is to test the serialize and deserialize performance by
timing it.".

Expressiveness. This attribute aims at evaluating whether the
summaries are easy to read. 90 summaries written without having
access to the stereotypes were considered as easy to read com-
pared to 78 summaries from the writers with access to the stereo-
types. However, when considering the answers for the summaries
ranked as easy-to-read or somewhat-readable, both SWiTestereo
and SW_t¢Sereo account for 86%-90% of the summaries, which
are very close. One possible explanation for the slight difference in
favor of SW_T¢Stereo might be that the extra TESTEREO tag informa-
tion could increase the complexity of the summaries. For example,
the summary “This is an ‘ignored’ test which also does nothing so it
makes sure that the program can handle nothing w/o blowing up (it

ICPC 18, May 27-28, 2018, Gothenburg, Sweden

throws an exception not just the stack trace)." is hard to read although
it contains the keyword “ignore". Another example is “setup the
current object by assigning values to the tomcat, context, and loader
fields."

Rationale. We also analyzed the free-text answers provided
by the summary readers when supporting their preferences for
summaries from SW_teszereo OF SWiTeStereo- Overall, 72 expla-
nations claimed that the choice was based on the completeness of
the summary. Examples include: ‘The summary allows for a deeper
understanding of what the program is doing and what it is using to
make itself work", “I prefer this summary because it is more detailed
than the other.", and “I like this one because it gives you enough in-
formation without going overboard". 52 out of the 72 explanations
were for answers in favor of summaries from SW,T¢Stereo. Thus,
the rationale provided by the readers reinforces our findings that
TESTEREO helped developers to comprehend the test cases and write
better test summaries that include important info.

26 explanations mentioned the expressiveness as the main at-
tribute for making their choice: “This summary is very easy for
programmers to understand." and “Easier to read, while I can hardly
understand what Summary1 is trying to say.". In this case, 12 expla-
nations are for readers in favor of summaries from SW, Testereo-
Finally, 4 decisions were made based on the conciseness of the sum-
maries: “Slightly more concise", “Concise", “This concisely explains
what is going on with no extra material but it could use a little more
information.", and “Too much extra stuff in Summary 1".

Summary for RQ5. The evaluation of the scenario of writing and
reading summaries for unit test methods suggests that the proposed
unit test stereotypes improve the comprehension of tests cases.
The results showed that manually written summaries with assis-
tance from TESTEREO tags covered more important information
than the summaries written without it. In addition, by compar-
ing the evaluation between summaries with and without using
TESTEREO tags, the results indicated that TESTEREO tags did not
introduce redundant information or make the summaries hard to
read.

5.3 What are the developers perspectives of the
TeSTEREO-based reports for systems in
which they contributed?

We received completed surveys from 25 developers of the Apache
projects. While the number of participants is not very high, partic-
ipation is an inherent uncontrollable difficulty when conducting
a user study with open source developers. In terms of the highest
academic degree obtained by participants, we had the following
distribution: one with a high school degree (4%), seven with a
Bachelor’s degree (28%), sixteen with a Master’s degree (64%), and
one with Ph.D. (4%). Concerning the programming experience, the
mean value is 20.8 years of experience and the median value is
20 years. More specifically, participants had on average 12.9 years
of industrial/open-source experience (the median was 14 years).
The questions related to RQ3 and the answers provided by the
practitioners are as the following:

SQ;. Which of the following tasks do you think the tags
are useful for? (Multiple-choice and Optional). 48% selected
“Test case comprehension/understanding”, 44 % selected “Generating
summary of unit test case", 40% vote for the option “Unit test case

Boyang Li, Christopher Vendome, Mario Linares-Vasquez, and Denys Poshyvanyk

Class: org.apache.catalina.connector.TestResponse

“This method/test case:
- Verifies values of objects/variables related to
API calls (Java or TPL)

- Verifies assertions inside branch conditions.

- Verifies (unjsuccessful execution of the test
case by reporting explicitly a failure

- Verifies whether objects/variable are equal to
an expected value

- Gontains more than 2 JUnit-based stereatypes

@Test testBug49598()
Tomcat tomcat=getTomcatInstance();
Context ctx=tomcat.addContext("",)i

Bug49598Serviet());

);

Exception {

Tomcat.addServiet(ctx,
ctx.addServletMapping(
tomcat.start();
Map> headers=: HashMap<>() ;
geturl(+ getPort() +
(Map.Entry> header : headers.entrySet()) {
(header.getKey() == {
List values=header.getValue();
(values.size() == 1 && values.get(0).startsWith(

ByteChunk() ,headers);

}
fail(+ values);

Figure 7: TeStereo documentation for a test case in the Tom-
cat project.

maintenance", and only 8% checked the option “Debugging unit test
cases".

SQ,. Which of the following tasks do you think the re-
ports are useful for? (Multiple-choice and Optional). 60% se-
lected “Test case comprehension/understanding”, 48 % selected “Gen-
erating summary of unit test case", 40% vote for the option “Unit test
case maintenance", and only 8% checked the option “Debugging unit
test cases".

$Qs. What tasks(s) do you think the tags/report might be
useful for? (Open question) To complement the first two SQs,
S$Qs3 aims at examining if the stereotypes and reports are useful
from a practitioner’s perspective for other software-related tasks.
We categorized the responses into the following groups:

o Unit test quality evaluation: The participants mentioned the
following uses like “evaluate the quality of the unit tests", “a rough
categorization [of unit tests] by runtime, e.g. ‘fast’ and ‘slow™, and
“quality/complexity metrics".

o Bad test detection: two participants suggested that the tech-
nique could be used for detecting bad tests. The responses include
“Fixing a system with a lot of bad tests" & “probably verifying if
there’s good ‘failure’ message".

e Code navigation: One response suggested that the TESTEREO re-
port is “a good way to jump into the source code". This response
demonstrates that users can comprehend the test code easier by
looking at the TESTEREO report.

SQ4. Is the summary displayed when hovering over the
gray balloon icon useful for you? (Binary-choice). TESTEREO s
reports include a speech balloon (Figure 7) icon that displays a
summary automatically generated by aggregating the descriptions
of the stereotypes?. We wanted to evaluate usefulness of this feature,
and we obtained 14 positive and 11 negative responses. The positive
answers were augmented with rationale such as ‘It gives the purpose
of unit test case glimpsly", “Was hard to find, but yes, this makes it
easier to grok what you’re looking at", and “It is clear". As for the
negative answers, the rationale described compatibility issues with
mobile devices (“I am viewing this on an iPad. I can’t hover", “hovers
don’t seem to work"). Yet, some participants found the summary
redundant since the info was in the tags.

SQs. What are the elements that you like the most in the
report? (Multiple-choice). Most of the practitioners selected source
code box (14 answers, 56%) and test case tags (11 answers, 44%).
This suggests that the surveyed practitioners recognize the benefit
of the stereotype tags, and are more likely to use the combination

2Note that TeStereo’s reports (including the balloon and summary features) were only
available for the Apache developers.

Aiding Comprehension of Unit Test Cases and Test Suites
with Stereotype-based Tagging

@Test public void testSingleElementRange(){
final int start=1;
final int max=1;
final int step=-1;
final List seg=new ArrayList();
final IntegerSequence.Range

r=IntegerSequence.range(start,max,step);

for (Integer i : r) {seqg.add(i);}
Assert.assertEquals(1,seq.size());
Assert.assertEquals(seq.size(),r.size());
Assert.assertEquals(start,seq.get(@).intValue());3}

Figure 8: InternalCallVerifier missed by TESTEREO.

of tags and source code boxes. We received 5 answers (20%) for
“gray balloon icon & summary", 3 (12%) for “navigation box", and 4
(16%) for “filter".

SQ¢. Please provide an example of the method that you
think the tags are especially useful for unit test case compre-
hension (Open question). For SQ¢, we collected nine responses in
total, and this is related to the open question nature in which some
participants filled blank spaces or other characters. One participant
mentioned the testForkModeAlways method in project maven and
explained his choice with the following rationale: “This method is
tagged 'BranchVerifier’, and arguably it cyclomatic complexity is to
great for a test." This explanation shows that the stereotype tags (i.e,
BranchVerifier and IterativeVerifier) help developers identify test
code that should not include branches/loops. Another response men-
tions the testLogIDGenerationWithLowestID method in project
Ace; the method was tagged as Logger by TESTEREO and the practi-
tioner augmented his answer with the following: “Logging in unit
tests is usually a code smell, just by looking at this method I realize
what event.toRepresentation() returns is not compared with an
expected value." This example shows that stereotype tags are also
useful for other software maintenance tasks such as code smell de-
tection. Another example is the method testLogfilePlacement
in Ant, and the developer claimed that this is a very good example
because the tags helped him to identify that the test case is an
internal call verifier. Some responses did not provide the signature
of the method, but their comments are useful (e.g., “TestCleaner is
useful to show complexity (hopefully unneeded) of test cases" and “I
believe they would be useful to check if developers are only developing
shallow test cases").

SQy. Please provide an example of the method that you
think the tags are NOT useful for unit test case comprehen-
sion (open question). For SQ7, we collected nine valid responses.
One example highlights the need for improving the limitations men-
tioned in Section 5.1, in particular the method nonExistentHost()
with the following comment from a developer: “it’s about ‘“verifies
(un)successful execution’, but it’s about expected exception in par-
ticular case." This issue is due to the fact that TESTEREO performs
over-approximation during static analysis. Although TESTEREO does
not track any branch conditions in the method (some paths may not
be executed with a certain input), the over-approximate approach
guarantees that potential paths are not missed when TESTEREO tags
the unit test case.

SQs. What are the elements that you think need improve-
ment in the report? (Open question). For SQg, we collected 13
valid responses. Some practitioners suggested augmenting the re-
ports with summaries describing the method, for example: “If it can
explain about the function, it would be great" and “It’d be nicer if the

ICPC ’18, May 27-28, 2018, Gothenburg, Sweden

tags conveyed more semantics concepts, rather than mere syntactic
properties". Also, some comments asked for improvement of the
user experience in the reports: ‘the report should highlight in red
the test methods which do contain any assertions" and “Being able to
collapse the code blocks to make it easier to see summaries".

S$Qy. What additional information would you find helpful
if it were included in the reports? (Open question). These are
some sample answers:

o Test suite quality: some participants suggested that we need to
create a new stereotype to identify redundant test cases, include
test coverage info, show evolution of the tags per commits, and
indicate size of the method which can be an indicator of methods
that need refactoring;

o Integration: some practitioners also suggested that we add a
link to the full source code on GitHub, so that the code can be
seen in its larger context. They also suggested that we integrate
TESTEREO into SonarQube;

o Detailed description: these suggestions are more related to
personal preferences; for example, “highlighting the aspect in
the code", “I would be interested in being able to find which tests
check which accessors or methods and vice versa.", and “specify
what is verified by this method". The last comment is aligned with
the purpose of other summarization approaches such as Test-
Describer [52] and UnitTestScribe [40], which generate natural
language descriptions of the assertions and focal methods.

Summary for RQjs. Overall, we obtained 25 responses from ac-
tive Apache developers, who provided us with useful feedback
for improving the stereotypes and the reports. Concerning the
usefulness of the stereotypes and the reports, most of the surveyed
developers believed that TESTEREO ’s tags and reports are useful
for test case comprehension tasks. Other tasks reported by the
developers, in which the tags and the reports might be useful, are
code smell detection and source code navigation.

5.4 Threats to Validity

Threats to internal validity relate to response bias by participants
that either had more difficulty or did not have problems while un-
derstanding unit test cases or writing summaries. Based on the
results of the study and the large number of the participants, we ob-
served that responses were not dominantly distributed to extremes,
which would indicate that these developers were particularly biased
based on such difficulty.

The external threats to validity relate to generalizing the con-
clusions from the study. In our study, we state that these results
are based on our sample of unit test cases and participants, but do
not claim that these results generalize to all developing systems
in other languages and other developers. However, we do present
the sampling procedure of unit tests from the whole set of unit
test in the 231 Apache projects, which aims to minimize the threat.
The selected methods are highly diverse in terms of methods size,
method stereotypes, and the number of stereotypes. In addition, we
present demographic information of the participants that suggests
that we have a diverse sample of developers.

Another threat to validity is that TESTEREO has some limita-
tions due to the current implementation of the data-flow based
analysis. For example, TESTEREO cannot interpret the variable as-
signment relations since those require inter-procedural analysis,

ICPC 18, May 27-28, 2018, Gothenburg, Sweden

which leads to false negatives. For example, the unit test case in
Figure 8 was annotated as InternalCallVerifier by the taggers
since the method has a slicing path from variable r to seq, and
IntegerSequence.range(start,max, step) at line 6 is an inter-
nal method call. However, TESTEREO cannot interpret the variable
assignment relations in the for-loop (line 7), since it needs to un-
derstand the assignment relations in “Integer i:r" and “seq.add(i)".
Due to this limitation, TESTEREO loses the backward tracking to the
internal function call.

6 RELATED WORK

There are some related techniques for studying unit test cases,
which include unit test case minimization [37, 38], prioritization
[20, 56, 59], test case descriptions [36, 40, 52, 68], code quality
[10], test coverage [33], data generation [39, 43], unit test smells
[14, 44, 61-63], fault localization [65], automatic test case genera-
tion [18, 25, 27, 37, 60, 64, 66], and automatic recommendation of
test examples [53]. TESTEREO is also related to (i) techniques for gen-
erating documentation for software artifacts [23, 34, 41, 42, 47], and
(ii) other approaches for supporting code comprehension provided
by difference tools [26, 40, 46, 49, 52]. Compared to the existing
approaches, TESTEREO is novel in that it considers stereotypes at
the test suite level.

6.1 Stereotypes Definition and Detection

Several studies [21, 23, 24] focused on classifying software entities,
such as methods, classes, and repository commits. Generally, the
studies classify software entities as different stereotypes based on
static analysis techniques and predefined rules [23, 24]. Dragan et
al. first presented and defined taxonomy of method stereotypes [23].
The authors implemented a tool, namely StereoCode, which auto-
matically identifies method stereotypes for all methods in a system.
Later, Dragan et al. extended the classification of stereotypes to
class level granularity by considering frequency and composition
of the method stereotypes in one class [24]. The results showed
that 95% of the classes were stereotyped by their approach. Dragan
et al. further refined stereotypes at the commit level [21]. The cate-
gorization of a commit is based on the stereotype of the methods
that are added/deleted in the commit. Different from Dragan et
al’s implementation that works on C++, Moreno and Marcus [48]
implemented a classification tool, named JStereoCode, for auto-
matically identifying method and class stereotypes in Java systems.
Andras et al. measured runtime behavior of methods and method
calls to reflect method stereotypes [9]. Their observation showed
that most methods behave as expected based on the stereotypes.
Overall, none of the existing studies focus on stereotype classifi-
cation of unit test cases. Our approach is the first one to define and
classify unit test case stereotypes by (i) analyzing unit test API calls
and (ii) performing static analysis on data/control flows.

6.2 Utilizing Stereotypes for Automatic
Documentation

A group of approaches and studies utilize stereotype identifica-
tion for other goals. Linares-Vasquez et al. [17, 41] implemented a
tool, namely ChangeScribe, for automatically generating commit
messages. ChangeScribe extracts changes between two adjacent
versions of a project and identifies involved change types in ad-
dition to performing commit level stereotype analysis. Dragan et

Boyang Li, Christopher Vendome, Mario Linares-Vasquez, and Denys Poshyvanyk

al. showed that the distribution of method stereotypes could be
an indicator of system architecture/design [22]. In addition, their
technique could be utilized in clustering systems with similar ar-
chitecture/design. Moreno et al. [46, 49] and Abid et al. [7] utilized
class stereotypes to summarize the responsibilities of classes in
different programming languages (Java and C++) respectively. Gha-
fari et al. [30] used stereotypes to detect focal methods (methods
responsible for system state changes examined through assertions
in unit tests) in a unit test case. Overall, our work is first to improve
unit test comprehension and test suite navigation by using unit test
stereotypes.

6.3 Automatic Documentation of Unit Test
Cases

Kamimura and Murphy presented an approach for automatically
summarizing JUnit test cases [36]. Their approach identified the
focal method based on the number of invocations of the method.
Panichella et al. [52] presented an approach, TestDescriber, for
generating test case summaries on automatically generated JUnit
test cases. The summary contains three different levels of granular-
ity: class, method, and test level (i.e., branch coverage). Furthermore,
Li et al. [40] proposed UnitTestScribe that combines static analy-
sis, natural language processing, and backward slicing techniques
to automatically generate detailed method-level summarization for
unit test cases. Zhang et al. [67, 68] presented a natural language-
based approach that extracts the descriptive nature of test names
to generate test templates. Overall, none of the existing techniques
for documenting unit test cases focuses on unit test case stereotypes,
besides our approach.

7 CONCLUSION

In this paper, we first presented a novel catalog of stereotypes
for methods in unit tests to categorize JUnit test cases into 21
stereotypes; the catalog aims at improving program comprehension
of unit test, when the unit test methods are annotated with the
stereotypes. We propose an approach, TESTEREO, for automatically
tagging stereotypes for unit tests by performing control-flow, data-
flow, and API call based static analyses on the source code of a unit
test suite. TESTEREO also generates html reports that include the
stereotype tags, source code, and navigation features to improve
the comprehension and browsing of unit tests in a large test suite.

To validate TESTEREO, we conducted empirical studies based on
231 Apache projects, 46 students and researchers and a survey with
25 Apache developers. Also, we evaluated 420 manually generated
summaries and 210 unit test methods with and without stereotype
annotations. Our results show that (i) TESTEREO achieves very high
precision and recall (0.99 & 0.94) in terms of annotating unit test
stereotypes, (ii) the proposed stereotypes improve comprehension
of unit test cases in software maintenance tasks, and (iii) most of
the developers agreed that TESTEREO stereotypes and reports are
useful. Our results demonstrate that TeStereo’s tags are useful for
test case comprehension tasks as well as other tasks, such as code
smell detection and source code navigation.

8 ACKNOWLEDGEMENTS

We would like to thank the Apache developers that participated
in the survey and provided meaningful feedback. Additionally, we
would like to thank the individuals that participated in our study.

Aiding Comprehension of Unit Test Cases and Test Suites
with Stereotype-based Tagging

REFERENCES

[10]

(11

[12

[13]

[14

[16]
[17]

[18

[19]

[20]

[21

[22]

[23]

[24

[25]

[29]

[30]

[31

[32]

[33]

[34]

JMockit. http://jmockit.org/.

JUnit. http://junit.org/.

Mockito. http://mockito.org/.

Nunit. http://www.nunit.org/.

Online appendix. https://sites.google.com/site/testereoonline/.

PHPUnit. https://phpunit.de/.

Nahla J. Abid, Natalia Dragan, Michael L. Collard, and Jonathan I. Maletic. 2015.
Using Stereotypes in the Automatic Generation of Natural Language Summaries
for C++ Methods. In Proc. ICSME. IEEE, 561-565.

Nouh Alhindawi, Natalia Dragan, Michael L. Collard, and Jonathan I. Maletic.
2013. Improving Feature Location by Enhancing Source Code with Stereotypes.
DOI: http://dx.doi.org/10.1109/ICSM.2013.41

Peter Andras, Anjan Pakhira, Laura Moreno, and Andrian Marcus. A measure
to assess the behavior of method stereotypes in object-oriented software. In
WETSoM 2013. IEEE.

Mauricio F Aniche, Gustavo A Oliva, and Marco A Gerosa. 2013. What do the
asserts in a unit test tell us about code quality? a study on open source and
industrial projects. In CSMR’13. IEEE, 111-120.

David Astels. 2003. Test-Driven Development: A Practical Guide: A Practical Guide.
Prentice Hall PTR.

Luciano Baresi and Matteo Miraz. 2010. TestFul: Automatic Unit-test Generation
for Java Classes. In Proceedings of ICSE10. ACM, New York, NY, USA, 281-284.
DOI : http://dx.doi.org/10.1145/1810295.1810353

Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and
Sebastiano Panichella. 2013. The evolution of project inter-dependencies in a
software ecosystem: The case of apache. In ICSM. IEEE, 280-289.

Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and David
Binkley. 2012. An empirical analysis of the distribution of unit test smells and
their impact on software maintenance. In ICSM’12 28th. IEEE, 56-65.

Kent Beck. 2003. Test Driven Development: By Example. Addison-Wesley Profes-
sional.

Kent Beck and Cynthia Andres. 2004. Extreme Programming Explained: Embrace
Change (2nd ed.). Addison-Wesley.

Luis Fernando Cortés-Coy, Mario Linares-Vasquez, Jairo Aponte, and Denys
Poshyvanyk. 2014. On automatically generating commit messages via summa-
rization of source code changes. In SCAM’14. IEEE, 275-284.

Ermira Daka, José Campos, Gordon Fraser, Jonathan Dorn, and Westley Weimer.
2015. Modeling readability to improve unit tests. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering. ACM.

Ermira Daka and Gordon Fraser. 2014. A Survey on Unit Testing Practices and
Problems. In ISSRE’14. 201-211. DOI: http://dx.doi.org/10.1109/ISSRE.2014.11
Daniel Di Nardo, Nadia Alshahwan, Lionel Briand, and Yvan Labiche. 2013.
Coverage-based test case prioritisation: An industrial case study. In ICST’13.
IEEE, 302-311.

Natalia Dragan, Michael L Collard, Maen Hammad, and Jonathan I Maletic. 2011.
Using stereotypes to help characterize commits. In Software Maintenance (ICSM),
2011 27th IEEE International Conference on. IEEE, 520-523.

Natalia Dragan, Michael L Collard, and Jonathan Maletic. Using method stereo-
type distribution as a signature descriptor for software systems. In ICSM 2009.
567-570.

Natalia Dragan, Michael L Collard, and Jonathan I Maletic. 2006. Reverse engi-
neering method stereotypes. In Software Maintenance, 2006. ICSM’06. 22nd IEEE
International Conference on. IEEE, 24-34.

Natalia Dragan, Michael L Collard, and Jonathan I Maletic. 2010. Automatic
identification of class stereotypes. In Software Maintenance (ICSM), 2010 IEEE
International Conference on. IEEE, 1-10.

Faezeh Ensan, Ebrahim Bagheri, and Dragan Gasevi¢. 2012. Evolutionary search-
based test generation for software product line feature models. In AISE. Springer,
613-628.

J. Fowkes, P. Chanthirasegaran, R. Ranca, M. Allamanis, M. Lapata, and C. Sutton.
2017. IEEE Transactions on Software Engineering (2017).

Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for
object-oriented software. In FSE’11. ACM, 416-419.

Gordon Fraser and Andrea Arcuri. 2013. Whole Test Suite Generation. IEEE Trans.
Softw. Eng. 39, 2 (Feb. 2013), 276-291. DOI : http://dx.doi.org/10.1109/TSE.2012.14
Juan Pablo Galeotti, Gordon Fraser, and Andrea Arcuri. 2014. Extending a Search-
based Test Generator with Adaptive Dynamic Symbolic Execution. In Proceedings
of the 2014 ISSTA (ISSTA 2014). ACM, 421-424. DOI :http://dx.doi.org/10.1145/
2610384.2628049

Mohammad Ghafari, Carlo Ghezzi, and Konstantin Rubinov. 2015. Automatically
identifying focal methods under test in unit test cases. In SCAM’15. IEEE, 61-70.
Barney G. Glaser and Anselm L. Strauss. 1967. The Discovery of Grounded Theory:
Strategies for Qualitative Research. Aldine de Gruyter.

Andy Hunt and Dave Thomas. 2003. Pragmatic Unit Testing in Java with JUnit.
The Pragmatic Programmers.

Chen Huo and James Clause. 2016. Interpreting Coverage Information Using
Direct and Indirect Coverage. In 2016 IEEE International Conference on Software

Testinf, Verification and Validation (ICST). IEEE, 234-243.
Daniel Jackson and David A Ladd. 1994. Semantic Diff: A Tool for Summarizing

the Effects of Modifications.. In ICSM, Vol. 94. 243-252.

(35]
[36]

[37

[38

(39]

[40]

[41]

[42]

[43

[44]

[45

[46]

[47]

(48]

[49]

[53

[54

[55

[56

[57

[58

[59

[60

[61

[62

[63

ICPC ’18, May 27-28, 2018, Gothenburg, Sweden

Ranjit Jhala and Rupak Majumdar. 2005. Path slicing. In ACM SIGPLAN Notices,
Vol. 40. ACM, 38-47.

Manabu Kamimura and Gail C Murphy. 2013. Towards generating human-
oriented summaries of unit test cases. In ICPC’13. IEEE, 215-218.

Yong Lei and James H Andrews. 2005. Minimization of randomized unit test
cases. In Software Reliability Engineering, 2005. ISSRE 2005. 16th IEEE International
Symposium on. IEEE, 10-pp.

Andreas Leitner, Manuel Oriol, Andreas Zeller, Ilinca Ciupa, and Bertrand Meyer.
2007. Efficient unit test case minimization. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering. ACM,
417-420.

Boyang Li, Mark Grechanik, and Denys Poshyvanyk. 2014. Sanitizing and mini-
mizing databases for software application test outsourcing. In ICST 2014. IEEE,
233-242.

B. Li, C. Vendome, M. Linares-Vasquez, D. Poshyvanyk, and N.A. Kraft. 2016.
Automatically Documenting Unit Test Cases. In Proceedings of ICST’16.

Mario Linares-Vasquez, Luis Fernando Cortés-Coy, Jairo Aponte, and Denys
Poshyvanyk. 2015. Changescribe: A tool for automatically generating commit
messages. In 37th IEEE/ACM ICSE’15, Formal Research Tool Demonstration.

M. Linares-Vasquez, B. Li, C. Vendome, and D. Poshyvanyk. Documenting Data-
base Usages and Schema Constraints in Database-Centric Applications. In IS-
STA’16.

Ruchika Malhotra and Mohit Garg. 2011. An adequacy based test data generation
technique using genetic algorithms. Journal of information processing systems 7,
2 (2011), 363-384.

Gerard Meszaros. 2007. xUnit test patterns: Refactoring test code. Pearson Educa-
tion.

Audris Mockus, Roy T Fielding, and James D Herbsleb. 2002. Two case studies
of open source software development: Apache and Mozilla. ACM TOSEM 11, 3
(2002), 309-346.

Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pollock,
and K Vijay-Shanker. Automatic generation of natural language summaries for
java classes. In ICPC 2013. IEEE, 23-32.

Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrian
Marcus, and Gerardo Canfora. 2014. Automatic generation of release notes. In
ESEC/FSE’14. ACM, 484-495.

Laura Moreno and Andrian Marcus. 2012. Jstereocode: automatically identifying
method and class stereotypes in java code. In ASE’12. ACM, 358-361.

Laura Moreno, Andrian Marcus, Lori Pollock, and K Vijay-Shanker. 2013. Jsum-
marizer: An automatic generator of natural language summaries for java classes.
In ICPC 2013. IEEE, 230-232.

D. North. Introducing BDD. http://dannorth.net/ introducing-bdd.

Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-Directed Random Test Generation (ICSE °07). IEEE Computer Society,
10. DOI:http://dx.doi.org/10.1109/ICSE.2007.37

Sebastiano Panichella, Annibale PanichellaaAN, Moritz BelleraAN, Andy Zaid-
man, and Harald Gall. 2016. The impact of test case summaries on bug fixing
performance: An empirical investigation. In ICSE’16.

Raphael Pham, Yauheni Stoliar, and Kurt Schneider. Automatically recommending
test code examples to inexperienced developers. In FSE’15. ACM, 890-893.
Peter C Rigby, Daniel M German, and Margaret-Anne Storey. 2008. Open source
software peer review practices: a case study of the apache server. In Proceedings
of the 30th ICSE. ACM, 541-550.

José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and Andrea
Arcuri. 2015. Combining multiple coverage criteria in search-based unit test
generation. In International Symposium on Search Based Software Engineering.
Springer, 93-108.

Gregg Rothermel, Roland H Untch, Chengyun Chu, and Mary Jean Harrold. 2001.
Prioritizing test cases for regression testing. TSE 27, 10 (2001), 929-948.

Marina Sokolova and Guy Lapalme. 2009. A systematic analysis of performance
measures for classification tasks. Information Processing & Management 45, 4
(2009), 427-437.

Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K Vijay-
Shanker. 2010. Towards automatically generating summary comments for java
methods. In ASE. ACM, 43-52.

Panagiotis Stratis and Ajitha Rajan. 2016. Test Case Permutation to Improve Exe-
cution Time. In 31th IEEE/ACM International Conference on Automated Software
Engineering (ASE).

Hongyin Tang, Guoquan Wu, Jun Wei, and Hua Zhong. 2016. Generating test
cases to expose concurrency bugs in android applications. In Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engineering. ACM,
648-653.

Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Penta, Rocco
Oliveto, Andrea Lucia, and Denys Poshyvanyk. 2016. An Empirical Investigation
into the Nature of Test Smells. In ASE’16.

Arie Van Deursen and Leon Moonen. 2002. The video store revisited-thoughts on
refactoring and testing. In Proc. 3rd Int’l Conf. eXtreme Programming and Flexible
Processes in Software Engineering. Citeseer, 71-76.

Arie van Deursen, Leon Moonen, Alex van den Bergh, and Gerard Kok. 2001.
Refactoring test code. CWL

http://jmockit.org/
http://junit.org/
http://mockito.org/
http://www.nunit.org/
https://sites.google.com/site/testereoonline/
https://phpunit.de/
http://dx.doi.org/10.1109/ICSM.2013.41
http://dx.doi.org/10.1145/1810295.1810353
http://dx.doi.org/10.1109/ISSRE.2014.11
http://dx.doi.org/10.1109/TSE.2012.14
http://dx.doi.org/10.1145/2610384.2628049
http://dx.doi.org/10.1145/2610384.2628049
http://dannorth.net/introducing-bdd
http://dx.doi.org/10.1109/ICSE.2007.37

ICPC 18, May 27-28, 2018, Gothenburg, Sweden Boyang Li, Christopher Vendome, Mario Linares-Vasquez, and Denys Poshyvanyk

[64] Westley Weimer. 2015. Generating Readable Unit Tests for Guava. In SSBSE 2015, Cores. In ASE’16.
Bergamo, Italy, September 5-7, 2015, Vol. 9275. Springer, 235. [67] Benwen Zhang, Emily Hill, and James Clause. 2015. Automatically Generating
[65] Jifeng Xuan and Martin Monperrus. 2014. Test case purification for improv- Test Templates from Test Names. In ASE 2015. IEEE, 506-511.
ing fault localization. In Proceedings of the 22nd ACM SIGSOFT International [68] Benwen Zhang, Emily Hill, and James Clause. 2016. Towards Automatically
Symposium on Foundations of Software Engineering. ACM, 52-63. Generating Descriptive Names for Unit Tests. In ASE’16.

[66] Akihisa Yamada, Takashi Kitamura, Cyrille Artho, Eun-Hye Choi, and Armin
Biere. 2016. Greedy Combinatorial Test Case Generation Using Unsatisfiable

	Abstract
	1 Introduction
	2 Unit Test Case Stereotypes
	2.1 JUnit API-based Stereotypes
	2.2 Data-/Control-flow Based Stereotypes

	3 Documenting Unit Test Cases with TeStereo
	4 Empirical Study
	4.1 Research Questions
	4.2 Context Selection
	4.3 Experimental Design

	5 Empirical Results
	5.1 What is TeStereo's accuracy for identifying stereotypes?
	5.2 Do the proposed stereotypes improve comprehension of tests cases (i.e., methods in test units)?
	5.3 What are the developers perspectives of the TeStereo-based reports for systems in which they contributed?
	5.4 Threats to Validity

	6 Related Work
	6.1 Stereotypes Definition and Detection
	6.2 Utilizing Stereotypes for Automatic Documentation
	6.3 Automatic Documentation of Unit Test Cases

	7 Conclusion
	8 Acknowledgements
	References

